메뉴 건너뛰기




Volumn 36, Issue 4, 1996, Pages 488-504

Maximal sublattices of finite distributive lattices

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0030459331     PISSN: 00025240     EISSN: None     Source Type: Journal    
DOI: 10.1007/BF01233919     Document Type: Article
Times cited : (10)

References (14)
  • 1
    • 0011316376 scopus 로고
    • The Frattini sublattice of a finite distributive lattice
    • ABAD, M. and ADAMS, M. E., The Frattini sublattice of a finite distributive lattice, Algebra Universalis 32 (1994), 314-329.
    • (1994) Algebra Universalis , vol.32 , pp. 314-329
    • Abad, M.1    Adams, M.E.2
  • 2
    • 0011352478 scopus 로고
    • The Frattini sublattice of a distributive lattice
    • ADAMS, M. E., The Frattini sublattice of a distributive lattice, Algebra Universalis 3 (1973), 216-228.
    • (1973) Algebra Universalis , vol.3 , pp. 216-228
    • Adams, M.E.1
  • 4
    • 0004264852 scopus 로고
    • University of Missouri Press, Columbia MO 65211
    • BALBES, R. and DWINGER, P., Distributive Lattices, University of Missouri Press, 1974, Columbia MO 65211.
    • (1974) Distributive Lattices
    • Balbes, R.1    Dwinger, P.2
  • 5
    • 0011359466 scopus 로고
    • Frattini sublattices of distributive lattices
    • CHEN, C. C., KOH, K. M. and TAN, S. K., Frattini sublattices of distributive lattices, Algebra Universalis 3 (1973), 294-303.
    • (1973) Algebra Universalis , vol.3 , pp. 294-303
    • Chen, C.C.1    Koh, K.M.2    Tan, S.K.3
  • 6
    • 51249188053 scopus 로고
    • On the Frattini sublattice of a finite distributive lattice
    • CHEN, C. C., KOH, K. M. and TAN, S. K., On the Frattini sublattice of a finite distributive lattice, Algebra Universalis 5(1975), 88-97.
    • (1975) Algebra Universalis , vol.5 , pp. 88-97
    • Chen, C.C.1    Koh, K.M.2    Tan, S.K.3
  • 7
    • 38249037238 scopus 로고
    • On the complexity of interval orders and semiorders
    • FAIGLE, U. and TURAN, G., On the complexity of interval orders and semiorders, Discrete Math. 63 (1987), 131-141.
    • (1987) Discrete Math. , vol.63 , pp. 131-141
    • Faigle, U.1    Turan, G.2
  • 8
    • 0011311931 scopus 로고
    • Posets with large dimension and relatively few critical pairs
    • FISHBURN, P. C. and TROTTER, W. T., Posets with large dimension and relatively few critical pairs, Order 10 (1993), 317-328.
    • (1993) Order , vol.10 , pp. 317-328
    • Fishburn, P.C.1    Trotter, W.T.2
  • 9
    • 0000183796 scopus 로고
    • Ideal theory for lattices
    • HASHIMOTO, J., Ideal theory for lattices, Math. Japon. 2 (1952), 149-186.
    • (1952) Math. Japon. , vol.2 , pp. 149-186
    • Hashimoto, J.1
  • 10
    • 0002779102 scopus 로고
    • Dimension theory for ordered sets
    • I. Rival (Ed.), Reidel Publ. Co., Dordrecht, Holland
    • KELLY, D. and TROTTER, W. T., Dimension theory for ordered sets, in: Ordered sets, I. Rival (Ed.), Reidel Publ. Co., Dordrecht, Holland, 1982, 171-211.
    • (1982) Ordered Sets , pp. 171-211
    • Kelly, D.1    Trotter, W.T.2
  • 11
    • 0011316377 scopus 로고
    • On the Frattini sublattice of a lattice
    • KOH, K. M., On the Frattini sublattice of a lattice, Algebra Universalis 1 (1971), 104-116.
    • (1971) Algebra Universalis , vol.1 , pp. 104-116
    • Koh, K.M.1
  • 12
    • 0000081099 scopus 로고
    • The rank of a distributive lattice
    • RABINOVITCH, I. and RIVAL, I., The rank of a distributive lattice, Discrete Math. 25 (1979), 275-279.
    • (1979) Discrete Math. , vol.25 , pp. 275-279
    • Rabinovitch, I.1    Rival, I.2
  • 13
    • 84966224063 scopus 로고
    • Maximal sublaitices of finite distributive lattices
    • RIVAL, I., Maximal sublaitices of finite distributive lattices, Proc. Amer. Math. Soc. 37 (1973). 417-420.
    • (1973) Proc. Amer. Math. Soc. , vol.37 , pp. 417-420
    • Rival, I.1
  • 14
    • 0003231885 scopus 로고
    • Deciding Frattini is NP-complete
    • RYTER, C. and SCHMID, J., Deciding Frattini is NP-complete, Order 11 (1994), 257-279.
    • (1994) Order , vol.11 , pp. 257-279
    • Ryter, C.1    Schmid, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.