메뉴 건너뛰기




Volumn 11, Issue 4 SPEC. ISS., 1996, Pages 507-518

Knowledge acquisition from questionnaire data using simulated breeding and inductive learning methods

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; DECISION MAKING; GENETIC ALGORITHMS; LEARNING SYSTEMS;

EID: 0030401208     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0957-4174(96)00066-8     Document Type: Article
Times cited : (15)

References (39)
  • 2
    • 0029724561 scopus 로고    scopus 로고
    • A computational model for distributed knowledge systems with learning mechanisms
    • Aiba, H. & Terano, T. (1996). A computational model for distributed knowledge systems with learning mechanisms. Expert Systems With Applications, 10(3/4), 417-427.
    • (1996) Expert Systems with Applications , vol.10 , Issue.3-4 , pp. 417-427
    • Aiba, H.1    Terano, T.2
  • 3
    • 25444532289 scopus 로고
    • Multistrategy learning from engineering data by integrating inductive generalization and genetic algorithms
    • R. Michalski & G. Tecuci (Eds), CA: Morgan/Kaufmann
    • Bala, J. W., De Jong, K. & Pachowicz, P. W. (1994). Multistrategy learning from engineering data by integrating inductive generalization and genetic algorithms. In R. Michalski & G. Tecuci (Eds), Machine learning IV: a multistrategy approach, pp. 471-488. CA: Morgan/Kaufmann.
    • (1994) Machine Learning IV: A Multistrategy Approach , pp. 471-488
    • Bala, J.W.1    De Jong, K.2    Pachowicz, P.W.3
  • 6
    • 0002117591 scopus 로고
    • A further comparison of splitting rules for decision-tree induction
    • Buntine, W. & Niblett, T. (1992). A further comparison of splitting rules for decision-tree induction. Machine Learning, 8, 75-86.
    • (1992) Machine Learning , vol.8 , pp. 75-86
    • Buntine, W.1    Niblett, T.2
  • 7
    • 0000173488 scopus 로고
    • Tree-based model
    • J. M. Chambers & T. J. Hastie (Eds), AT&T Bell Laboratories
    • Clark, L. A. & Pregibon, D. (1992). Tree-based model. In J. M. Chambers & T. J. Hastie (Eds), Statistical models in S. AT&T Bell Laboratories.
    • (1992) Statistical Models in S
    • Clark, L.A.1    Pregibon, D.2
  • 12
    • 0028531366 scopus 로고
    • Using background knowledge to improve inductive learning: A case study in molecular biology
    • Hirsh, H. & Noordewier, M. (1994) Using background knowledge to improve inductive learning: a case study in molecular biology. IEEE Expert, 9(5), 3-6.
    • (1994) IEEE Expert , vol.9 , Issue.5 , pp. 3-6
    • Hirsh, H.1    Noordewier, M.2
  • 14
    • 0027696178 scopus 로고
    • A knowledge-intensive generic algorithm for supervised learning
    • Janikow, C. Z. (1993). A knowledge-intensive generic algorithm for supervised learning. Machine Learning, 13, 189-228.
    • (1993) Machine Learning , vol.13 , pp. 189-228
    • Janikow, C.Z.1
  • 18
    • 84976752794 scopus 로고
    • Multiagent systems: An emerging subdiscipline of AI
    • Lesser, V. R. (1995). Multiagent systems: an emerging subdiscipline of AI. ACM Computing Surveys, 27(3), 340-342.
    • (1995) ACM Computing Surveys , vol.27 , Issue.3 , pp. 340-342
    • Lesser, V.R.1
  • 19
    • 0028405109 scopus 로고
    • The importance of attribute selection measures in decision tree induction
    • Liu, W. Z. & White, A. P. (1994). The importance of attribute selection measures in decision tree induction. Machine Learning, 15, 25-41.
    • (1994) Machine Learning , vol.15 , pp. 25-41
    • Liu, W.Z.1    White, A.P.2
  • 20
    • 34249966833 scopus 로고
    • An empirical comparison of selection measures for decision-tree induction
    • Minger, J. (1989a). An empirical comparison of selection measures for decision-tree induction. Machine Learning, 3, 319-342.
    • (1989) Machine Learning , vol.3 , pp. 319-342
    • Minger, J.1
  • 21
    • 79952785777 scopus 로고
    • An empirical comparison of pruning methods for decision-tree induction
    • Minger, J. (1989b). An empirical comparison of pruning methods for decision-tree induction. Machine Learning, 4, 227-243.
    • (1989) Machine Learning , vol.4 , pp. 227-243
    • Minger, J.1
  • 22
    • 33744584654 scopus 로고
    • Induction for decision trees
    • Quinlan, J. R. (1986). Induction for decision trees. Machine Learning, 1(1), 81-106.
    • (1986) Machine Learning , vol.1 , Issue.1 , pp. 81-106
    • Quinlan, J.R.1
  • 25
    • 0004282518 scopus 로고
    • SAS Institute Inc.
    • SAS (1985). SAS user's guide. SAS Institute Inc.
    • (1985) SAS User's Guide
  • 26
    • 0001259758 scopus 로고
    • Overfitting avoidance as bias
    • Schaffer, C. (1993). Overfitting avoidance as bias. Machine Learning, 10, 153-178.
    • (1993) Machine Learning , vol.10 , pp. 153-178
    • Schaffer, C.1
  • 30
    • 0039863464 scopus 로고
    • Integrating machine learning and simulated breeding techniques to analyze the characteristics of consumer goods
    • J. Biethahn & V. Nissen (Eds), Berlin: Springer
    • Terano, T., Ishino, Y. & Yoshinaga, K. (1995b). Integrating machine learning and simulated breeding techniques to analyze the characteristics of consumer goods. In J. Biethahn & V. Nissen (Eds), Evolutionary algorithms in management applications, pp. 211-224. Berlin: Springer.
    • (1995) Evolutionary Algorithms in Management Applications , pp. 211-224
    • Terano, T.1    Ishino, Y.2    Yoshinaga, K.3
  • 32
    • 0029491203 scopus 로고
    • Marketing data analysis using inductive learning and genetic algorithms with interactive- and automated-phases
    • Terano, T. & Ishino, Y. (1995b). Marketing data analysis using inductive learning and genetic algorithms with interactive- and automated-phases. In Proceedings 4th IEEE International Conference on Evolutional Computing, pp. 771-776.
    • (1995) Proceedings 4th IEEE International Conference on Evolutional Computing , pp. 771-776
    • Terano, T.1    Ishino, Y.2
  • 33
    • 0039863466 scopus 로고    scopus 로고
    • Knowledge acquisition from questionnnaire data using simulated breeding and inductive learning methods
    • Terano, T. & Ishino, Y. (1996a). Knowledge acquisition from questionnnaire data using simulated breeding and inductive learning methods. In Proceedings 3rd World Congress on Expert Systems, pp. 869-876.
    • (1996) Proceedings 3rd World Congress on Expert Systems , pp. 869-876
    • Terano, T.1    Ishino, Y.2
  • 34
    • 33646932614 scopus 로고    scopus 로고
    • Interactive knowledge discovery from marketing questionnaires using simulated breeding and inductive learning methods
    • In preparation
    • Terano, T. & Ishino, Y. (1996b). Interactive knowledge discovery from marketing questionnaires using simulated breeding and inductive learning methods. In Proceedings of the 2nd AAAI Conference on Knowledge Discovery from Data (KDD-96). In preparation.
    • (1996) Proceedings of the 2nd AAAI Conference on Knowledge Discovery from Data (KDD-96)
    • Terano, T.1    Ishino, Y.2
  • 36
    • 0039271793 scopus 로고
    • Improving a rule induction system using genetic algorithms
    • R. Michalski & G. Tecuci (Eds), CA: Morgan/Kaufmann
    • Vafaie, H. & De Jong, K. A. (1994). Improving a rule induction system using genetic algorithms. In R. Michalski & G. Tecuci (Eds), Machine learning IV: a multistrategy approach, pp. 453-470. CA: Morgan/Kaufmann.
    • (1994) Machine Learning IV: A Multistrategy Approach , pp. 453-470
    • Vafaie, H.1    De Jong, K.A.2
  • 39
    • 0000599779 scopus 로고
    • Hypothesis-driven constructive induction in AQ17-HCI: A method and experiments
    • Wnek, J. & Michalski, R. S. (1994). Hypothesis-driven constructive induction in AQ17-HCI: A method and experiments. Machine Learning, 14, 139-168.
    • (1994) Machine Learning , vol.14 , pp. 139-168
    • Wnek, J.1    Michalski, R.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.