메뉴 건너뛰기




Volumn 99, Issue 1, 1996, Pages 53-58

Energy corrections in Hamiltonian dynamics simulations

Author keywords

Energy conservation; Numerical algorithms; Symplectic

Indexed keywords

ALGORITHMS; CHAOS THEORY; COMPUTATIONAL COMPLEXITY; COMPUTER SIMULATION; NUMERICAL METHODS;

EID: 0030395606     PISSN: 00104655     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0010-4655(96)00112-9     Document Type: Article
Times cited : (18)

References (14)
  • 2
    • 0026413023 scopus 로고
    • Hamiltonian algorithms for Hamiltonian systems and a comparative numerical study
    • K. Feng and M.Z. Qin, Hamiltonian algorithms for Hamiltonian systems and a comparative numerical study, Comput. Phys. Commun. 65 (1991) 173-187.
    • (1991) Comput. Phys. Commun. , vol.65 , pp. 173-187
    • Feng, K.1    Qin, M.Z.2
  • 3
    • 0003171736 scopus 로고
    • A symplectic integration algorithm for separable Hamiltonian functions
    • J. Candy and W. Rozmus, A symplectic integration algorithm for separable Hamiltonian functions, J. Comput. Phys. 92 (1991) 230-256.
    • (1991) J. Comput. Phys. , vol.92 , pp. 230-256
    • Candy, J.1    Rozmus, W.2
  • 4
    • 0000450752 scopus 로고
    • Sixth-order lie group integrators
    • E. Forest, Sixth-order Lie group integrators, J. Comput. Phys. 99 (1992) 209-213.
    • (1992) J. Comput. Phys. , vol.99 , pp. 209-213
    • Forest, E.1
  • 6
    • 33746314863 scopus 로고
    • Symplectic integration of Hamiltonian systems
    • P.J. Channel and J.C. Scovel, Symplectic integration of Hamiltonian systems, Nonlinearity 3 (1990) 231-259.
    • (1990) Nonlinearity , vol.3 , pp. 231-259
    • Channel, P.J.1    Scovel, J.C.2
  • 7
    • 0346653215 scopus 로고
    • The accuracy of symplectic integrators
    • R.I. McLachlan and P. Atela, The accuracy of symplectic integrators, Nonlinearity 5 (1992) 541-562.
    • (1992) Nonlinearity , vol.5 , pp. 541-562
    • McLachlan, R.I.1    Atela, P.2
  • 8
    • 0002600463 scopus 로고
    • General nonsymmetric higher-order decompositions of exponential operators and symplectic integrators
    • M. Suzuki, General nonsymmetric higher-order decompositions of exponential operators and symplectic integrators, J. Phys. Soc. Jpn 61 (1992) 3015-3019.
    • (1992) J. Phys. Soc. Jpn , vol.61 , pp. 3015-3019
    • Suzuki, M.1
  • 9
    • 0001410035 scopus 로고
    • Lie-Poisson Hamiltonian-Jacobi theory and Lie-Poisson integrators
    • Z. Ge and J.E. Marsden, Lie-Poisson Hamiltonian-Jacobi theory and Lie-Poisson integrators, Phys. Lett. A 133 (1988) 135-139.
    • (1988) Phys. Lett. A , vol.133 , pp. 135-139
    • Ge, Z.1    Marsden, J.E.2
  • 10
    • 0040114714 scopus 로고
    • Recent progress in the theory and application of symplectic integrators
    • H. Yoshida, Recent progress in the theory and application of symplectic integrators, Cel. Mech. Dyn. Astr. 56 (1993) 27-43.
    • (1993) Cel. Mech. Dyn. Astr. , vol.56 , pp. 27-43
    • Yoshida, H.1
  • 11
    • 0003105059 scopus 로고
    • Formal energy of a symplectic scheme for Hamiltonian systems and its applications
    • Y.F. Tang, Formal energy of a symplectic scheme for Hamiltonian systems and its applications, Comput. Math. Appl. 27 (1994) 31-39.
    • (1994) Comput. Math. Appl. , vol.27 , pp. 31-39
    • Tang, Y.F.1
  • 12
    • 0002079274 scopus 로고
    • Analysis of four numerical solutions of a nonlinear Klein-Gordon equation
    • S. Jimenez and L. Vazquez, Analysis of four numerical solutions of a nonlinear Klein-Gordon equation, Appl. Math. Comput. 35 (1990) 61-95.
    • (1990) Appl. Math. Comput. , vol.35 , pp. 61-95
    • Jimenez, S.1    Vazquez, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.