메뉴 건너뛰기




Volumn 39, Issue 23, 1996, Pages 3953-3968

New regularization by transformation for neural network based inverse analyses and its application to structure identification

Author keywords

Data transformation; Inverse problem; Neural networks; Regularization; Structure identification; Vibration analysis

Indexed keywords

DATA PROCESSING; FINITE ELEMENT METHOD; INVERSE PROBLEMS; ITERATIVE METHODS; MATHEMATICAL MODELS; MATHEMATICAL TRANSFORMATIONS;

EID: 0030379063     PISSN: 00295981     EISSN: None     Source Type: Journal    
DOI: 10.1002/(SICI)1097-0207(19961215)39:23<3953::AID-NME31>3.0.CO;2-O     Document Type: Article
Times cited : (37)

References (41)
  • 1
    • 0027907532 scopus 로고
    • A parallel finite element method with a supercomputer network
    • G. Yagawa, A. Yoshioka, S. Yoshimura and N. Soneda, 'A parallel finite element method with a supercomputer network', Comput. Struct., 47, 407-418 (1993).
    • (1993) Comput. Struct. , vol.47 , pp. 407-418
    • Yagawa, G.1    Yoshioka, A.2    Yoshimura, S.3    Soneda, N.4
  • 2
    • 38249002757 scopus 로고
    • Parallel finite elements on a massively parallel computer with domain decomposition
    • G. Yagawa and R. Shioya, 'Parallel finite elements on a massively parallel computer with domain decomposition', Comput. Systems Eng., 4, 495-503 (1993).
    • (1993) Comput. Systems Eng. , vol.4 , pp. 495-503
    • Yagawa, G.1    Shioya, R.2
  • 4
    • 0025799060 scopus 로고
    • A technique to update finite element model using frequency response data
    • W. J. Visser and M. Imregun, 'A technique to update finite element model using frequency response data', Proc. 9th Int. Modal Analysis Conf., 1991, pp. 462-468.
    • (1991) Proc. 9th Int. Modal Analysis Conf. , pp. 462-468
    • Visser, W.J.1    Imregun, M.2
  • 6
    • 0022471098 scopus 로고
    • Learning representations by back propagation errors
    • D. E. Rumelhart, G. E. Hinton and R. J. Williams, 'Learning representations by back propagation errors', Nature 323, 533-536 (1986).
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 8
    • 0004211060 scopus 로고
    • PTR Prentice-Hall, Englewood Cliffs, N.J.
    • S. Y. Kung, Digital Neural Networks, PTR Prentice-Hall, Englewood Cliffs, N.J., 1993.
    • (1993) Digital Neural Networks
    • Kung, S.Y.1
  • 10
    • 0024640581 scopus 로고
    • The classification of defects from ultrasonic data using neural networks: The hopfield method
    • A. R. Baker and C. G. Windsor, 'The classification of defects from ultrasonic data using neural networks: the hopfield method', NDT Int., 22, 97-105 (1989).
    • (1989) NDT Int. , vol.22 , pp. 97-105
    • Baker, A.R.1    Windsor, C.G.2
  • 11
    • 0025401737 scopus 로고
    • Eddy current defect characterization using neural networks
    • L. Upda and S. S. Upda, 'Eddy current defect characterization using neural networks', Materials Evaluation, 48, 342-347 (1990).
    • (1990) Materials Evaluation , vol.48 , pp. 342-347
    • Upda, L.1    Upda, S.S.2
  • 12
    • 0026405610 scopus 로고
    • Neurobiological computational modes in structural analysis and design
    • P. Hajela and L. Berke, 'Neurobiological computational modes in structural analysis and design', Comput. Struct., 41, 657-667 (1991).
    • (1991) Comput. Struct. , vol.41 , pp. 657-667
    • Hajela, P.1    Berke, L.2
  • 13
    • 0025782169 scopus 로고
    • Knowledge-based modeling of material behavior and neural networks
    • J. Ghaboussi, J. H. Garrett and X. Wu, 'Knowledge-based modeling of material behavior and neural networks', ASCE J. Eng. Mech., 117, 132-153 (1991).
    • (1991) ASCE J. Eng. Mech. , vol.117 , pp. 132-153
    • Ghaboussi, J.1    Garrett, J.H.2    Wu, X.3
  • 14
    • 0026203882 scopus 로고
    • A model of perceptron learning with a hidden layer for engineering design
    • S. L. Hung and H. Adeli, 'A model of perceptron learning with a hidden layer for engineering design', Neurocomputing, 3, 3-14 (1991).
    • (1991) Neurocomputing , vol.3 , pp. 3-14
    • Hung, S.L.1    Adeli, H.2
  • 15
    • 0001511844 scopus 로고
    • Quality control of composite materials by neural network analysis of ultrasonic power spectra
    • J. J. Thomsen and K. Lund, 'Quality control of composite materials by neural network analysis of ultrasonic power spectra', Materials Evaluation, 49, 594-600 (1991).
    • (1991) Materials Evaluation , vol.49 , pp. 594-600
    • Thomsen, J.J.1    Lund, K.2
  • 16
    • 0026822025 scopus 로고
    • Use of neural networks in detection of structural damage
    • X. Wu, J. Ghaboussi and J. H. Garrett, 'Use of neural networks in detection of structural damage', Compute. Struct., 42, 649-659 (1992).
    • (1992) Compute. Struct. , vol.42 , pp. 649-659
    • Wu, X.1    Ghaboussi, J.2    Garrett, J.H.3
  • 17
    • 0027667552 scopus 로고
    • Optimum design of aerospace structural components using neural networks
    • L. Berke, S. N. Patnaik and P. L. N. Morthy, 'Optimum design of aerospace structural components using neural networks', Comput. Struct., 48, 1001-1010 (1993).
    • (1993) Comput. Struct. , vol.48 , pp. 1001-1010
    • Berke, L.1    Patnaik, S.N.2    Morthy, P.L.N.3
  • 18
    • 0029357335 scopus 로고
    • Counterpropagation neural networks in structural engineering
    • H. Adeli and H.-S. Park, 'Counterpropagation neural networks in structural engineering', ASCE J. Struct. Eng., 121, 1205-1212 (1995).
    • (1995) ASCE J. Struct. Eng. , vol.121 , pp. 1205-1212
    • Adeli, H.1    Park, H.-S.2
  • 19
    • 0029633899 scopus 로고
    • Application of artificial neural networks in structural design expert systems
    • A. Mukherjee and J. M. Deshpande, 'Application of artificial neural networks in structural design expert systems', Comput Struct., 54, 367-375 (1995).
    • (1995) Comput Struct. , vol.54 , pp. 367-375
    • Mukherjee, A.1    Deshpande, J.M.2
  • 20
    • 0029252342 scopus 로고
    • Multilayer perceptron in damage detection of bridge structures
    • P. C. Pandey and S. V. Barai, 'Multilayer perceptron in damage detection of bridge structures', Comput. Struct., 54, 579-608 (1995).
    • (1995) Comput. Struct. , vol.54 , pp. 579-608
    • Pandey, P.C.1    Barai, S.V.2
  • 21
    • 0030146024 scopus 로고    scopus 로고
    • Analysis of possible failure mechanisms and root failure causes in power plant components using neural networks and structural failure database
    • S. Yoshimura and A. S. Jovanovic, 'Analysis of possible failure mechanisms and root failure causes in power plant components using neural networks and structural failure database', Trans. ASME J. Pressure Vessel Technol., 118, 237-246 (1996).
    • (1996) Trans. ASME J. Pressure Vessel Technol. , vol.118 , pp. 237-246
    • Yoshimura, S.1    Jovanovic, A.S.2
  • 22
    • 85033862741 scopus 로고    scopus 로고
    • Automated system for structural design using design window search approach: Its application to fusion first wall design
    • Submitted for Publication
    • Y. Mochizuki, S. Yoshimura and G. Yagawa, 'Automated system for structural design using design window search approach: its application to fusion first wall design', Advances in Engineering Software, Submitted for Publication.
    • Advances in Engineering Software
    • Mochizuki, Y.1    Yoshimura, S.2    Yagawa, G.3
  • 24
    • 4243128974 scopus 로고
    • An automated inverse analysis system using neural networks and computational mechanics with its application to identification of 3-D crack shape hidden in Solid
    • S. Yoshimura, Y. Saito and G. Yagawa, 'An automated inverse analysis system using neural networks and computational mechanics with its application to identification of 3-D crack shape hidden in Solid', Transaction of 13th Int. Conf. on Structural Mechanics in Reactor Technology, Vol. G, 1995, pp. 473-478.
    • (1995) Transaction of 13th Int. Conf. on Structural Mechanics in Reactor Technology , vol.G , pp. 473-478
    • Yoshimura, S.1    Saito, Y.2    Yagawa, G.3
  • 25
    • 0041725900 scopus 로고
    • Parameter optimization of viscoplastic constitutive equation using hierarchical neural network
    • S. Yoshimura, H. Hishida and G. Yagawa, Parameter optimization of viscoplastic constitutive equation using hierarchical neural network', Proc. of VII Int. Congr. on Experimental Mechanics Vol 1, 1992, pp. 296-301.
    • (1992) Proc. of VII Int. Congr. on Experimental Mechanics , vol.1 , pp. 296-301
    • Yoshimura, S.1    Hishida, H.2    Yagawa, G.3
  • 26
    • 0037955315 scopus 로고
    • Inverse analysis by means of neural network and computational mechanics: Its application to structural identification of vibrating plate
    • Atlanta Technology Publications
    • S. Yoshimura and G. Yagawa, 'Inverse analysis by means of neural network and computational mechanics: its application to structural identification of vibrating plate', Inverse Problems (Specialized Monograph of ICES'93), Atlanta Technology Publications, (1993), pp. 184-193.
    • (1993) Inverse Problems (Specialized Monograph of ICES'93) , pp. 184-193
    • Yoshimura, S.1    Yagawa, G.2
  • 27
    • 0029278014 scopus 로고
    • Quantitative nondestructive examination with ultrasonic method using neural networks and computational mechanics
    • A. Oishi, K. Yamada, S. Yoshimura and G. Yagawa, 'Quantitative nondestructive examination with ultrasonic method using neural networks and computational mechanics', Computat. Mech., 15, 521-533 (1995).
    • (1995) Computat. Mech. , vol.15 , pp. 521-533
    • Oishi, A.1    Yamada, K.2    Yoshimura, S.3    Yagawa, G.4
  • 28
    • 0029222535 scopus 로고
    • Neural network approach to estimate stable crack growth in welded specimens
    • G. Yagawa, A. Matsuda, H. Kawate and S. Yoshimura, 'Neural network approach to estimate stable crack growth in welded specimens', Int. J. Pressure Vessels Piping, 63, 303-313 (1995).
    • (1995) Int. J. Pressure Vessels Piping , vol.63 , pp. 303-313
    • Yagawa, G.1    Matsuda, A.2    Kawate, H.3    Yoshimura, S.4
  • 29
    • 0024866495 scopus 로고
    • On the approximation realization of continuous mapping by neural networks
    • K. Funahashi, 'On the approximation realization of continuous mapping by neural networks', Neural Networks, 2, 183-192 (1989).
    • (1989) Neural Networks , vol.2 , pp. 183-192
    • Funahashi, K.1
  • 30
    • 0026953321 scopus 로고
    • Enhanced training algorithms and integrated training/architecture selection for multilayer perceptron networks
    • M. G. Bello, 'Enhanced training algorithms and integrated training/architecture selection for multilayer perceptron networks', IEEE Trans, on Neural Networks, 3, 864-875 (1992).
    • (1992) IEEE Trans, on Neural Networks , vol.3 , pp. 864-875
    • Bello, M.G.1
  • 31
    • 0028336556 scopus 로고
    • Genetic evolution of the topology and weight distribution of neural networks
    • V. Maniezzo, 'Genetic evolution of the topology and weight distribution of neural networks', IEEE Trans on Neural Networks, 5, 39-53 (1994).
    • (1994) IEEE Trans on Neural Networks , vol.5 , pp. 39-53
    • Maniezzo, V.1
  • 32
    • 0013020067 scopus 로고
    • The electric potential CT method for measuring two- and three-dimensional cracks
    • S. Kubo, T. Sakagami and K. Ohji, The electric potential CT method for measuring two- and three-dimensional cracks', Current Japanese Materials Res., Vol. 8, pp. 235-254 (1991).
    • (1991) Current Japanese Materials Res. , vol.8 , pp. 235-254
    • Kubo, S.1    Sakagami, T.2    Ohji, K.3
  • 34
    • 85033864087 scopus 로고
    • Computational inversion schemes for various categories of inverse problems
    • Atlanta Technology Publications
    • S. Kubo, 'Computational inversion schemes for various categories of inverse problems', Inverse Problems (Specialized Monograph of ICES'93), Atlanta Technology Publications, 1993, pp. 36-50.
    • (1993) Inverse Problems (Specialized Monograph of ICES'93) , pp. 36-50
    • Kubo, S.1
  • 36
    • 0024931167 scopus 로고
    • A new approach for finding the global minimum of error function of neural networks
    • N. Baba, 'A new approach for finding the global minimum of error function of neural networks', Neural Networks, 2, 367-373 (1989).
    • (1989) Neural Networks , vol.2 , pp. 367-373
    • Baba, N.1
  • 37
    • 0027662338 scopus 로고
    • Pruning Algorithms: 'A survey'
    • R. Reed, Pruning Algorithms: 'A survey', IEEE Trans. Neural Networks, 4, 740-747 (1993).
    • (1993) IEEE Trans. Neural Networks , vol.4 , pp. 740-747
    • Reed, R.1
  • 38
    • 0028425697 scopus 로고
    • Functional approximation by feed-forward networks: A least-squares approach to generalization
    • A. R. Webb, 'Functional approximation by feed-forward networks: a least-squares approach to generalization', IEEE Trans. Neural Networks, 5, 363-371 (1994).
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 363-371
    • Webb, A.R.1
  • 41
    • 0001160588 scopus 로고
    • What size net give valid generalization?
    • E. B. Baum and D. Haussler, 'What size net give valid generalization?', Neural Comput., 1, 151-160 (1989).
    • (1989) Neural Comput. , vol.1 , pp. 151-160
    • Baum, E.B.1    Haussler, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.