메뉴 건너뛰기




Volumn 17, Issue 12, 1996, Pages 1165-1169

Another class D'Alembert principle and a new Maggi equation for arbitrary order nonholonomic mechanical systems in derivative space

Author keywords

Correspondent kinetic energy; Derivative space; Formal holonomic system; New Maggi equation; Nonholonomic system; Universal D'Alembert principle

Indexed keywords

DIFFERENTIAL EQUATIONS; EQUATIONS OF MOTION;

EID: 0030378030     PISSN: 02534827     EISSN: None     Source Type: Journal    
DOI: 10.1007/BF02498704     Document Type: Article
Times cited : (2)

References (4)
  • 1
    • 33745892772 scopus 로고
    • A new Appell equation and generalized D'Alembert principle for nonholonomic mechanical systems in derivative space
    • in Chinese
    • Liang Tianling and Zhang Shuhong, A new Appell equation and generalized D'Alembert principle for nonholonomic mechanical systems in derivative space, Journal of Kunming Institute of Technology, 1 (1992), (in Chinese)
    • (1992) Journal of Kunming Institute of Technology , vol.1
    • Tianling, L.1    Shuhong, Z.2
  • 2
    • 0006091161 scopus 로고
    • Universal D'Alembert principle and equation of motion for any order nonholonomic systems in derivative space
    • Liang Tianling, Universal D'Alembert principle and equation of motion for any order nonholonomic systems in derivative space, Chinese Science Bulletin, 24 (1992).
    • (1992) Chinese Science Bulletin , vol.24
    • Tianling, L.1
  • 3
    • 85033062284 scopus 로고
    • A new method of establishing the mathematical model for arbitrary nonlinear nonholonomic system
    • Beijing
    • Liang Tianling, A new method of establishing the mathematical model for arbitrary nonlinear nonholonomic system, ICN M-2, Beijing (1993).
    • (1993) ICN , vol.M-2
    • Tianling, L.1
  • 4
    • 85033056532 scopus 로고
    • Publishing House of Shanghai Jiaotong University in Chinese
    • Wu Zhen, Analysis Mechanics, Publishing House of Shanghai Jiaotong University (1984). (in Chinese)
    • (1984) Analysis Mechanics
    • Zhen, W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.