메뉴 건너뛰기




Volumn 65, Issue 214, 1996, Pages 491-506

A continuous space-time finite element method for the wave equation

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATION BY FUNCTION; CONTINUOUS FUNCTION; DISCRETIZATION; ENERGY METHOD; ERROR ESTIMATION; SPACE TIME; TENSOR PRODUCT; WAVE EQUATION;

EID: 0030376796     PISSN: 00255718     EISSN: None     Source Type: Journal    
DOI: 10.1090/S0025-5718-96-00685-0     Document Type: Article
Times cited : (111)

References (18)
  • 1
    • 84966201439 scopus 로고
    • Continuous finite elements in space and time for the heat equation
    • MR 90d:65189
    • A. K. Aziz and P. Monk, Continuous finite elements in space and time for the heat equation, Math. Comp. 52 (1989), 255-2T4. MR 90d:65189
    • (1989) Math. Comp. , vol.52
    • Aziz, A.K.1    Monk, P.2
  • 2
    • 4243978249 scopus 로고
    • The h-p version of the finite element method
    • I. Babuška and T. Janik, The h-p version of the finite element method, SIAM J. Numer. Anal. 5 (1990), 363-399.
    • (1990) SIAM J. Numer. Anal. , vol.5 , pp. 363-399
    • Babuška, I.1    Janik, T.2
  • 3
    • 0001880241 scopus 로고
    • Semidiscrete and single step fully discrete approximations for second order hyperbolic equations
    • MR 80f:65115
    • G. A. Baker and J. H. Bramble, Semidiscrete and single step fully discrete approximations for second order hyperbolic equations, RAIRO Anal. Numér. 13 (1979), 75-100. MR 80f:65115
    • (1979) RAIRO Anal. Numér. , vol.13 , pp. 75-100
    • Baker, G.A.1    Bramble, J.H.2
  • 4
    • 38149144812 scopus 로고
    • Continuous finite elements in space and time for the nonhomogeneous wave equation
    • MR 94k:65138
    • L. Bales and I. Lasiecka, Continuous finite elements in space and time for the nonhomogeneous wave equation, Comput. Math. Appl. 27 (1994), 91-102. MR 94k:65138
    • (1994) Comput. Math. Appl. , vol.27 , pp. 91-102
    • Bales, L.1    Lasiecka, I.2
  • 5
    • 84968466873 scopus 로고
    • 2 Dirichlet boundary data
    • MR 95c:65176
    • 2 Dirichlet boundary data, Math. Comp. 64 (1995), 89-115. MR 95c:65176
    • (1995) Math. Comp. , vol.64 , pp. 89-115
  • 6
    • 0013099792 scopus 로고
    • Fully discrete galerkin methods for the Korteweg-de Vries equation
    • MR 87j:65108
    • J. L. Bona, V. A. Dougalis, and O. A. Karakashian, Fully discrete Galerkin methods for the Korteweg-de Vries equation, Comput. Math. Appl. 12A (1986), 859-884. MR 87j:65108
    • (1986) Comput. Math. Appl. , vol.12 A , pp. 859-884
    • Bona, J.L.1    Dougalis, V.A.2    Karakashian, O.A.3
  • 8
    • 0023329117 scopus 로고
    • Analysis of a continuous finite element method for hyperbolic equations
    • MR 88d:65133
    • R. S. Falk and G. R. Richter, Analysis of a continuous finite element method for hyperbolic equations, SIAM J. Numer. Anal. 24 (1987), 257-278. MR 88d:65133
    • (1987) SIAM J. Numer. Anal. , vol.24 , pp. 257-278
    • Falk, R.S.1    Richter, G.R.2
  • 9
    • 0242420138 scopus 로고
    • Long-time behaviour of arbitrary order continuous time Galerkin schemes for some one-dimensional phase transition problems
    • MR 95d:65083
    • D. A. French and S. Jensen, Long-time behaviour of arbitrary order continuous time Galerkin schemes for some one-dimensional phase transition problems. IMA J. Numer. Anal. 14 (1994), 421-442. MR 95d:65083
    • (1994) IMA J. Numer. Anal. , vol.14 , pp. 421-442
    • French, D.A.1    Jensen, S.2
  • 11
    • 0001965943 scopus 로고
    • Continuous finite element methods which preserve energy properties for nonlinear problems
    • MR 91i:65165
    • D. A. French and J. W. Schaeffer, Continuous finite element methods which preserve energy properties for nonlinear problems, Appl. Math. Comput. 39 (1991), 271-295. MR 91i:65165
    • (1991) Appl. Math. Comput. , vol.39 , pp. 271-295
    • French, D.A.1    Schaeffer, J.W.2
  • 12
    • 84968513694 scopus 로고
    • Convergence of an energy-preserving scheme for the Zakharov equations in one space dimension
    • MR 92e:65123
    • R. T. Glassey, Convergence of an energy-preserving scheme for the Zakharov equations in one space dimension, Math. Comp. 58 (1992), 83-102. MR 92e:65123
    • (1992) Math. Comp. , vol.58 , pp. 83-102
    • Glassey, R.T.1
  • 13
    • 84966205664 scopus 로고
    • Convergence of a second-order scheme for semilinear hyperbolic equations in 2 + 1 dimensions
    • MR 92h:65140
    • R. T. Glassey and J. Schaeffer, Convergence of a second-order scheme for semilinear hyperbolic equations in 2 + 1 dimensions, Math. Comp. 56 (1991), 87-106. MR 92h:65140
    • (1991) Math. Comp. , vol.56 , pp. 87-106
    • Glassey, R.T.1    Schaeffer, J.2
  • 14
    • 0027641889 scopus 로고
    • Discontinuous Galerkin finite element methods for second order hyperbolic problems
    • MR 95c:65154
    • C. Johnson, Discontinuous Galerkin finite element methods for second order hyperbolic problems, Comput. Methods Appl. Mech. Engrg. 107 (1993), 117-129. MR 95c:65154
    • (1993) Comput. Methods Appl. Mech. Engrg. , vol.107 , pp. 117-129
    • Johnson, C.1
  • 15
    • 0027578339 scopus 로고
    • On optimal order error estimates for the nonlinear Schrödinger equation
    • MR 94c:65119
    • O. Karakashian, G. D. Akrivis, and V. A. Dougalis, On optimal order error estimates for the nonlinear Schrödinger equation, SIAM J. Numer. Anal. 30 (1993), 377-400. MR 94c:65119
    • (1993) SIAM J. Numer. Anal. , vol.30 , pp. 377-400
    • Karakashian, O.1    Akrivis, G.D.2    Dougalis, V.A.3
  • 18
    • 0000765110 scopus 로고
    • Numerical solution of a nonlinear Klein-Gordon equation
    • MR 58:19970
    • W. Strauss and L. Vazquez Numerical solution of a nonlinear Klein-Gordon equation, J. Comput. Phys. 28 (1978), 271-278. MR 58:19970
    • (1978) J. Comput. Phys. , vol.28 , pp. 271-278
    • Strauss, W.1    Vazquez, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.