메뉴 건너뛰기




Volumn 24, Issue 5, 1996, Pages 2233-2249

Sequential estimation for the autocorrelations of linear processes

Author keywords

Asymptotic risk efficiency; Linear processes; Random cental limit theorem; Sample autocorrelations; Sequential estimation; Uniform integrability

Indexed keywords


EID: 0030374548     PISSN: 00905364     EISSN: None     Source Type: Journal    
DOI: 10.1214/aos/1069362319     Document Type: Article
Times cited : (11)

References (19)
  • 1
    • 0000897490 scopus 로고
    • On the central limit theorem for the sum of a random number of independent random variables
    • BLUM, J. R., HANSON, D. L. and ROSENBLATT, J. I. (1963). On the central limit theorem for the sum of a random number of independent random variables. Z. Wahrsch. Verw. Gebiete 1 389-393.
    • (1963) Z. Wahrsch. Verw. Gebiete , vol.1 , pp. 389-393
    • Blum, J.R.1    Hanson, D.L.2    Rosenblatt, J.I.3
  • 4
    • 0001228009 scopus 로고
    • The performance of a sequential procedure for the estimation of the mean
    • CHOW, Y. S. and YU, K. F. (1981). The performance of a sequential procedure for the estimation of the mean. Ann. Statist. 9 184-189.
    • (1981) Ann. Statist. , vol.9 , pp. 184-189
    • Chow, Y.S.1    Yu, K.F.2
  • 6
    • 38249002342 scopus 로고
    • A central limit theorem with random indices for stationary linear processes
    • FAKHRE-AZAKERI, I. and FARSHIDI, J. (1993). A central limit theorem with random indices for stationary linear processes. Statist. Probab. Lett. 17 91-95.
    • (1993) Statist. Probab. Lett. , vol.17 , pp. 91-95
    • Fakhre-Azakeri, I.1    Farshidi, J.2
  • 7
    • 0000971258 scopus 로고
    • Sequential estimation of the mean of a linear process
    • FAKHRE-ZAKERI, I. and LEE, S. (1992). Sequential estimation of the mean of a linear process. Sequential Anal. 11 181-197.
    • (1992) Sequential Anal. , vol.11 , pp. 181-197
    • Fakhre-Zakeri, I.1    Lee, S.2
  • 8
    • 38248998966 scopus 로고
    • Sequential estimation of the mean vector of a multivariate linear process
    • FAKHRE-ZAKERI, I. and LEE, S. (1993). Sequential estimation of the mean vector of a multivariate linear process. J. Multivariate Anal. 47 196-209.
    • (1993) J. Multivariate Anal. , vol.47 , pp. 196-209
    • Fakhre-Zakeri, I.1    Lee, S.2
  • 11
    • 0000838609 scopus 로고
    • Sequential estimation for the parameters of a stationary autoregressive model
    • LEE, S. (1994). Sequential estimation for the parameters of a stationary autoregressive model. Sequential Anal. 13 301-317.
    • (1994) Sequential Anal. , vol.13 , pp. 301-317
    • Lee, S.1
  • 12
    • 0039457198 scopus 로고
    • On the autocorrelation in time series
    • LOMNICKI, Z. A. and ZAREMBA, S. K. (1957). On the autocorrelation in time series. Ann. Math. Statist. 28 140-158.
    • (1957) Ann. Math. Statist. , vol.28 , pp. 140-158
    • Lomnicki, Z.A.1    Zaremba, S.K.2
  • 13
    • 0001624219 scopus 로고
    • Asymptotics for linear processes
    • PHILLIPS, P. C. B. and SOLO, V. (1992). Asymptotics for linear processes. Ann. Statist. 20 971-1001.
    • (1992) Ann. Statist. , vol.20 , pp. 971-1001
    • Phillips, P.C.B.1    Solo, V.2
  • 14
    • 0010776974 scopus 로고
    • On the central limit theorem for the sum of a random number of independent random variables
    • RÉYNI, A. (1960). On the central limit theorem for the sum of a random number of independent random variables. Acta Math. Acad. Sci. Hungar. 11 97-102.
    • (1960) Acta Math. Acad. Sci. Hungar. , vol.11 , pp. 97-102
    • Réyni, A.1
  • 15
    • 0002403662 scopus 로고
    • Sequential estimation of the mean of a normal population
    • U. Grenander, ed. Wiley, New York
    • ROBBINS, H. (1959). Sequential estimation of the mean of a normal population. In Probability and Statistics (U. Grenander, ed.) 235-245. Wiley, New York.
    • (1959) Probability and Statistics , pp. 235-245
    • Robbins, H.1
  • 17
    • 0001073050 scopus 로고
    • Sequential estimation of the mean of a first order stationary autoregressive process
    • SRIRAM, T. N. (1987). Sequential estimation of the mean of a first order stationary autoregressive process. Ann. Statist. 15 1079-1090.
    • (1987) Ann. Statist. , vol.15 , pp. 1079-1090
    • Sriram, T.N.1
  • 18
    • 0001824194 scopus 로고
    • Sequential estimation of the autoregressive parameter in a first order autoregressive process
    • SRIRAM, T. N. (1988). Sequential estimation of the autoregressive parameter in a first order autoregressive process. Sequential Anal. 7 53-74.
    • (1988) Sequential Anal. , vol.7 , pp. 53-74
    • Sriram, T.N.1
  • 19
    • 0001133097 scopus 로고
    • On the asymptotic efficiency of a sequential procedure for estimating the mean
    • STARR, N. (1966). On the asymptotic efficiency of a sequential procedure for estimating the mean. Ann. Math. Statist. 37 1173-1185.
    • (1966) Ann. Math. Statist. , vol.37 , pp. 1173-1185
    • Starr, N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.