-
1
-
-
0000897490
-
On the central limit theorem for the sum of a random number of independent random variables
-
BLUM, J. R., HANSON, D. L. and ROSENBLATT, J. I. (1963). On the central limit theorem for the sum of a random number of independent random variables. Z. Wahrsch. Verw. Gebiete 1 389-393.
-
(1963)
Z. Wahrsch. Verw. Gebiete
, vol.1
, pp. 389-393
-
-
Blum, J.R.1
Hanson, D.L.2
Rosenblatt, J.I.3
-
3
-
-
0003549661
-
-
Springer, New York
-
CHOW, Y. S. and TEICHER, H. (1988). Probability Theory: Independence, Interchangeability, Martingales. Springer, New York.
-
(1988)
Probability Theory: Independence, Interchangeability, Martingales
-
-
Chow, Y.S.1
Teicher, H.2
-
4
-
-
0001228009
-
The performance of a sequential procedure for the estimation of the mean
-
CHOW, Y. S. and YU, K. F. (1981). The performance of a sequential procedure for the estimation of the mean. Ann. Statist. 9 184-189.
-
(1981)
Ann. Statist.
, vol.9
, pp. 184-189
-
-
Chow, Y.S.1
Yu, K.F.2
-
6
-
-
38249002342
-
A central limit theorem with random indices for stationary linear processes
-
FAKHRE-AZAKERI, I. and FARSHIDI, J. (1993). A central limit theorem with random indices for stationary linear processes. Statist. Probab. Lett. 17 91-95.
-
(1993)
Statist. Probab. Lett.
, vol.17
, pp. 91-95
-
-
Fakhre-Azakeri, I.1
Farshidi, J.2
-
7
-
-
0000971258
-
Sequential estimation of the mean of a linear process
-
FAKHRE-ZAKERI, I. and LEE, S. (1992). Sequential estimation of the mean of a linear process. Sequential Anal. 11 181-197.
-
(1992)
Sequential Anal.
, vol.11
, pp. 181-197
-
-
Fakhre-Zakeri, I.1
Lee, S.2
-
8
-
-
38248998966
-
Sequential estimation of the mean vector of a multivariate linear process
-
FAKHRE-ZAKERI, I. and LEE, S. (1993). Sequential estimation of the mean vector of a multivariate linear process. J. Multivariate Anal. 47 196-209.
-
(1993)
J. Multivariate Anal.
, vol.47
, pp. 196-209
-
-
Fakhre-Zakeri, I.1
Lee, S.2
-
11
-
-
0000838609
-
Sequential estimation for the parameters of a stationary autoregressive model
-
LEE, S. (1994). Sequential estimation for the parameters of a stationary autoregressive model. Sequential Anal. 13 301-317.
-
(1994)
Sequential Anal.
, vol.13
, pp. 301-317
-
-
Lee, S.1
-
12
-
-
0039457198
-
On the autocorrelation in time series
-
LOMNICKI, Z. A. and ZAREMBA, S. K. (1957). On the autocorrelation in time series. Ann. Math. Statist. 28 140-158.
-
(1957)
Ann. Math. Statist.
, vol.28
, pp. 140-158
-
-
Lomnicki, Z.A.1
Zaremba, S.K.2
-
13
-
-
0001624219
-
Asymptotics for linear processes
-
PHILLIPS, P. C. B. and SOLO, V. (1992). Asymptotics for linear processes. Ann. Statist. 20 971-1001.
-
(1992)
Ann. Statist.
, vol.20
, pp. 971-1001
-
-
Phillips, P.C.B.1
Solo, V.2
-
14
-
-
0010776974
-
On the central limit theorem for the sum of a random number of independent random variables
-
RÉYNI, A. (1960). On the central limit theorem for the sum of a random number of independent random variables. Acta Math. Acad. Sci. Hungar. 11 97-102.
-
(1960)
Acta Math. Acad. Sci. Hungar.
, vol.11
, pp. 97-102
-
-
Réyni, A.1
-
15
-
-
0002403662
-
Sequential estimation of the mean of a normal population
-
U. Grenander, ed. Wiley, New York
-
ROBBINS, H. (1959). Sequential estimation of the mean of a normal population. In Probability and Statistics (U. Grenander, ed.) 235-245. Wiley, New York.
-
(1959)
Probability and Statistics
, pp. 235-245
-
-
Robbins, H.1
-
17
-
-
0001073050
-
Sequential estimation of the mean of a first order stationary autoregressive process
-
SRIRAM, T. N. (1987). Sequential estimation of the mean of a first order stationary autoregressive process. Ann. Statist. 15 1079-1090.
-
(1987)
Ann. Statist.
, vol.15
, pp. 1079-1090
-
-
Sriram, T.N.1
-
18
-
-
0001824194
-
Sequential estimation of the autoregressive parameter in a first order autoregressive process
-
SRIRAM, T. N. (1988). Sequential estimation of the autoregressive parameter in a first order autoregressive process. Sequential Anal. 7 53-74.
-
(1988)
Sequential Anal.
, vol.7
, pp. 53-74
-
-
Sriram, T.N.1
-
19
-
-
0001133097
-
On the asymptotic efficiency of a sequential procedure for estimating the mean
-
STARR, N. (1966). On the asymptotic efficiency of a sequential procedure for estimating the mean. Ann. Math. Statist. 37 1173-1185.
-
(1966)
Ann. Math. Statist.
, vol.37
, pp. 1173-1185
-
-
Starr, N.1
|