-
1
-
-
0000465804
-
Existence theory for a new class of variational problems
-
L. Ambrosio Existence theory for a new class of variational problems Arch. Rational Mech. Anal. Vol. 111 1990 291 322
-
(1990)
Arch. Rational Mech. Anal.
, vol.Vol. 111
, pp. 291-322
-
-
Ambrosio, L.1
-
3
-
-
0012944927
-
Sk-Valued Maps minimizing the Lp norm of the gradient with free discontinuities
-
p norm of the gradient with free discontinuities Ann. Sc. Norm. Sup. Pisa Vol. 18 1991 321 352
-
(1991)
Ann. Sc. Norm. Sup. Pisa
, vol.Vol. 18
, pp. 321-352
-
-
Carriero, M.1
Leaci, A.2
-
4
-
-
0000532812
-
Existence theorem for a minimum problem with free discontinuity set
-
E. De Giorgi M. Carriero A. Leaci Existence theorem for a minimum problem with free discontinuity set Arch. Rational Mech. Anal. Vol. 108 1989 195 218
-
(1989)
Arch. Rational Mech. Anal.
, vol.Vol. 108
, pp. 195-218
-
-
De Giorgi, E.1
Carriero, M.2
Leaci, A.3
-
5
-
-
0009412910
-
Lipschitz approximations to hypersurfaces, harmonic measure, and singular integrals
-
G. David D. Jerison Lipschitz approximations to hypersurfaces, harmonic measure, and singular integrals Indiana U. Math. Journal. Vol. 39 3 1990 831 845
-
(1990)
Indiana U. Math. Journal.
, vol.Vol. 39
, Issue.3
, pp. 831-845
-
-
David, G.1
Jerison, D.2
-
6
-
-
0002874591
-
A variational method in image segmentation: Existence and approximation results
-
G. Dal Maso J.-M. Morel S. Solimini A variational method in image segmentation: Existence and approximation results Acta Math. Vol. 168 1992 89 151
-
(1992)
Acta Math.
, vol.Vol. 168
, pp. 89-151
-
-
Dal Maso, G.1
Morel, J.-M.2
Solimini, S.3
-
7
-
-
85119468092
-
-
n : au-delà des graphes lipschitziens, Astérisque 193 , Société Mathématique de France, 1991.
-
-
-
-
8
-
-
84968497861
-
Quantitative rectifiability and Lipschitz mappings
-
G. David S. Semmes Quantitative rectifiability and Lipschitz mappings Transactions A.M.S. Vol. 337 1993 855 889
-
(1993)
Transactions A.M.S.
, vol.Vol. 337
, pp. 855-889
-
-
David, G.1
Semmes, S.2
-
9
-
-
0003748461
-
Analysis of and on Uniformly Rectifiable Sets
-
G. David S. Semmes Analysis of and on Uniformly Rectifiable Sets Mathematical surveys and monographs Vol. 38 1993 American Mathematical Society
-
(1993)
-
-
David, G.1
Semmes, S.2
-
10
-
-
85119469258
-
-
G. David and S. Semmes, On the singular sets of minimizers of the Mumford-Shah functional, to appear J. Math. Pures Appl .
-
-
-
-
11
-
-
85119465679
-
-
G. David and S. Semmes, On a variational problem from image processing, Proceedings of the conference in Honor of Jean-Pierre Kahane, Journ. of Fourier Analysis and Applications , 1995, pp. 161-187.
-
-
-
-
12
-
-
0003418232
-
Geometric Measure Theory
-
H. Federer Geometric Measure Theory Grundlehren der Mathematishen Wissenschaften 153 1963 Springer-Verlag
-
(1963)
-
-
Federer, H.1
-
13
-
-
0003604854
-
Bounded Analytic Functions
-
J. Garnett Bounded Analytic Functions 1981 Academic Press
-
(1981)
-
-
Garnett, J.1
-
14
-
-
0004193690
-
Minimal Surfaces and Functions of Bounded Variation
-
E. Giusti Minimal Surfaces and Functions of Bounded Variation 1984 Birkhäuser
-
(1984)
-
-
Giusti, E.1
-
16
-
-
85119465918
-
-
T. Hrycak, Ph.D. thesis , Yale university.
-
-
-
-
17
-
-
0038563974
-
Lipschitz and bi-Lipschitz functions
-
P. Jones Lipschitz and bi-Lipschitz functions Rev. Mat. Iberoamericana Vol. 4 1988 115 122
-
(1988)
Rev. Mat. Iberoamericana
, vol.Vol. 4
, pp. 115-122
-
-
Jones, P.1
-
18
-
-
0003639953
-
Variational Methods in Image Segmentation
-
J.-M. Morel S. Solimini Variational Methods in Image Segmentation Progress in Nonlinear differential equations and their applications Vol. 14 1995 Birkhauser
-
(1995)
-
-
Morel, J.-M.1
Solimini, S.2
-
19
-
-
84990602490
-
Optimal approximations by piecewise smooth functions and associated variational problems
-
D. Mumford J. Shah Optimal approximations by piecewise smooth functions and associated variational problems Comm. Pure Appl. Math. Vol. 42 1989 577 685
-
(1989)
Comm. Pure Appl. Math.
, vol.Vol. 42
, pp. 577-685
-
-
Mumford, D.1
Shah, J.2
-
20
-
-
0012054931
-
A criterion for the boundedness of singular integrals on hypersurfaces
-
S. Semmes A criterion for the boundedness of singular integrals on hypersurfaces Trans. Amer. Math. Soc. Vol. 311 2 1989 501 513
-
(1989)
Trans. Amer. Math. Soc.
, vol.Vol. 311
, Issue.2
, pp. 501-513
-
-
Semmes, S.1
-
21
-
-
0000750069
-
Analysis vs. geometry on a class of rectifiable hypersurfaces in Rn
-
n Indiana Math. J. Vol. 39 1990 1005 1035
-
(1990)
Indiana Math. J.
, vol.Vol. 39
, pp. 1005-1035
-
-
Semmes, S.1
-
22
-
-
84968497872
-
Hypersurfaces in Rn whose unit normal has small BMO norm
-
n whose unit normal has small BMO norm Proc. Amer. Math. Soc. Vol. 112 1991 403 412
-
(1991)
Proc. Amer. Math. Soc.
, vol.Vol. 112
, pp. 403-412
-
-
Semmes, S.1
-
23
-
-
0003799686
-
Singular integrals and differentiability properties of functions
-
E.M. Stein Singular integrals and differentiability properties of functions 1970 Princeton University Press
-
(1970)
-
-
Stein, E.M.1
-
25
-
-
0039873851
-
A remark on BMO and bounded harmonic functions
-
N. Varopoulos A remark on BMO and bounded harmonic functions Pacific J. Math. Vol. 73 1977 257 259
-
(1977)
Pacific J. Math.
, vol.Vol. 73
, pp. 257-259
-
-
Varopoulos, N.1
-
26
-
-
0003104844
-
Morceaux de graphes lipschitziens et intégrales singulières sur une surface
-
G. David Morceaux de graphes lipschitziens et intégrales singulières sur une surface Revista Matematica Iberoamericana Vol. 4 1 1988 73 114
-
(1988)
Revista Matematica Iberoamericana
, vol.Vol. 4
, Issue.1
, pp. 73-114
-
-
David, G.1
-
27
-
-
0003986822
-
The geometry of fractal sets
-
K. Falconer The geometry of fractal sets 1984 Cambridge University Press
-
(1984)
-
-
Falconer, K.1
-
28
-
-
1842780738
-
Calderón-Zygmund Operators, Pseudodifferential Operators, and the Cauchy Integral of Calderón
-
J.L. Journé Calderón-Zygmund Operators, Pseudodifferential Operators, and the Cauchy Integral of Calderón Lecture Notes, in Math. Vol. 994 1983 Springer-Verlag
-
(1983)
-
-
Journé, J.L.1
-
29
-
-
85119464878
-
-
P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, to appear, Cambridge Studies in Advanced Math ., Cambridge Univ. Press.
-
-
-
|