-
2
-
-
0011126724
-
Les familles exponentielles à variance quadratique homogène sont des lois de Wishart sur un cône symétrique
-
CASALIS, M. (1991). Les familles exponentielles à variance quadratique homogène sont des lois de Wishart sur un cône symétrique. C. R. Acad. Sci. Paris Sér. I Math. 312 537-540.
-
(1991)
C. R. Acad. Sci. Paris Sér. I Math.
, vol.312
, pp. 537-540
-
-
Casalis, M.1
-
3
-
-
0038153755
-
Un estimateur de la variance pour une famille exponentielle naturelle à fonction-variance quadratique
-
CASALIS, M. (1992a). Un estimateur de la variance pour une famille exponentielle naturelle à fonction-variance quadratique. C. R. Acad. Sci. Paris Sér. I Math. 314 143-146.
-
(1992)
C. R. Acad. Sci. Paris Sér. I Math.
, vol.314
, pp. 143-146
-
-
Casalis, M.1
-
4
-
-
0040868081
-
2 de fonction-variance V(m) = am ⊗ m + B(m) + C
-
2 de fonction-variance V(m) = am ⊗ m + B(m) + C. C. R. Acad. Sci. Paris Sér. I Math. 314 635-638.
-
(1992)
C. R. Acad. Sci. Paris Sér. I Math.
, vol.314
, pp. 635-638
-
-
Casalis, M.1
-
5
-
-
21144478907
-
Conjugate priors for exponential families having quadratic variance functions
-
CONSONNI, G. and VERONESE, P. (1992). Conjugate priors for exponential families having quadratic variance functions. J. Amer. Statist. Assoc. 87 1123-1127.
-
(1992)
J. Amer. Statist. Assoc.
, vol.87
, pp. 1123-1127
-
-
Consonni, G.1
Veronese, P.2
-
6
-
-
0000811835
-
Conjugate priors for exponential families
-
DIACONIS, P. and YLVISAKER, D. (1979). Conjugate priors for exponential families. Ann. Statist. 7 269-281.
-
(1979)
Ann. Statist.
, vol.7
, pp. 269-281
-
-
Diaconis, P.1
Ylvisaker, D.2
-
7
-
-
0039575485
-
The stricture of semi-simple Lie algebras
-
DYNKIN, E. (1950). The stricture of semi-simple Lie algebras. Uspehi Mat. Nauk (N.S.) 2 59-127. Am. Math. Soc. Transl. 17 (1950).
-
(1950)
Uspehi Mat. Nauk (N.S.)
, vol.2
, pp. 59-127
-
-
Dynkin, E.1
-
8
-
-
0040868074
-
-
DYNKIN, E. (1950). The stricture of semi-simple Lie algebras. Uspehi Mat. Nauk (N.S.) 2 59-127. Am. Math. Soc. Transl. 17 (1950).
-
(1950)
Am. Math. Soc. Transl.
, vol.17
-
-
-
9
-
-
0000004746
-
Some classes of orthogonal polynomials associated with martingales
-
FEINSILVER, P. (1986). Some classes of orthogonal polynomials associated with martingales. Proc. Amer. Math. Soc. 98 298-302.
-
(1986)
Proc. Amer. Math. Soc.
, vol.98
, pp. 298-302
-
-
Feinsilver, P.1
-
10
-
-
0003800332
-
Orthogonal polynomials and coherent states
-
Plenum New York
-
FEINSILVER, P. (1991). Orthogonal polynomials and coherent states. Symmetries in Science 5 159-172. Plenum New York.
-
(1991)
Symmetries in Science
, vol.5
, pp. 159-172
-
-
Feinsilver, P.1
-
11
-
-
21344449482
-
Conjugate parametrizations for natural exponential families
-
GUTIERREZ-PEÑA, E. and SMITH, A. F. M. (1995). Conjugate parametrizations for natural exponential families. J. Amer. Statist. Assoc. 90 1347-1356.
-
(1995)
J. Amer. Statist. Assoc.
, vol.90
, pp. 1347-1356
-
-
Gutierrez-Peña, E.1
Smith, A.F.M.2
-
15
-
-
0030356453
-
On the determinant of the second derivative of the Laplace transform
-
KOKONENDJI, C. and SESHADRI, V. (1996). On the determinant of the second derivative of the Laplace transform. Ann. Statist. 24 1813-1827.
-
(1996)
Ann. Statist.
, vol.24
, pp. 1813-1827
-
-
Kokonendji, C.1
Seshadri, V.2
-
17
-
-
0003336053
-
Lectures on natural exponential families and their variance-functions
-
LETAC, G. (1992). Lectures on natural exponential families and their variance-functions. Monograf. Mat. 5.
-
(1992)
Monograf. Mat.
, vol.5
-
-
Letac, G.1
-
18
-
-
0002757787
-
Natural real exponential families with cubic variance-functions
-
LETAC, G. and MORA, M. (1990). Natural real exponential families with cubic variance-functions. Ann. Statist. 18 1-37.
-
(1990)
Ann. Statist.
, vol.18
, pp. 1-37
-
-
Letac, G.1
Mora, M.2
-
19
-
-
84960600688
-
Orthogonal polynomsysteme mit einer besonderen Gestalt der erzengenden function
-
MEIXNER, J. (1934). Orthogonal Polynomsysteme mit einer besonderen Gestalt der erzengenden Function. J. London Math. Soc. 9 6-13.
-
(1934)
J. London Math. Soc.
, vol.9
, pp. 6-13
-
-
Meixner, J.1
-
21
-
-
0002233396
-
Natural exponential families with quadratic variance-function
-
MORRIS, C. N. (1982). Natural exponential families with quadratic variance-function. Ann. Statist. 10 65-80.
-
(1982)
Ann. Statist.
, vol.10
, pp. 65-80
-
-
Morris, C.N.1
-
24
-
-
0001676470
-
Diagonality of the Bhattacharyya matrix as a characterization
-
SHANBHAG, D. N. (1979). Diagonality of the Bhattacharyya matrix as a characterization. Theory Probab. Appl. 24 430-433.
-
(1979)
Theory Probab. Appl.
, vol.24
, pp. 430-433
-
-
Shanbhag, D.N.1
|