메뉴 건너뛰기




Volumn 24, Issue 4, 1996, Pages 1828-1854

The 2d + 4 simple quadratic natural exponential families on ℝd

(1)  Casalis, M a  

a CNRS   (France)

Author keywords

Morris class; Variance functions

Indexed keywords


EID: 0030364918     PISSN: 00905364     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (69)

References (24)
  • 2
    • 0011126724 scopus 로고
    • Les familles exponentielles à variance quadratique homogène sont des lois de Wishart sur un cône symétrique
    • CASALIS, M. (1991). Les familles exponentielles à variance quadratique homogène sont des lois de Wishart sur un cône symétrique. C. R. Acad. Sci. Paris Sér. I Math. 312 537-540.
    • (1991) C. R. Acad. Sci. Paris Sér. I Math. , vol.312 , pp. 537-540
    • Casalis, M.1
  • 3
    • 0038153755 scopus 로고
    • Un estimateur de la variance pour une famille exponentielle naturelle à fonction-variance quadratique
    • CASALIS, M. (1992a). Un estimateur de la variance pour une famille exponentielle naturelle à fonction-variance quadratique. C. R. Acad. Sci. Paris Sér. I Math. 314 143-146.
    • (1992) C. R. Acad. Sci. Paris Sér. I Math. , vol.314 , pp. 143-146
    • Casalis, M.1
  • 4
  • 5
    • 21144478907 scopus 로고
    • Conjugate priors for exponential families having quadratic variance functions
    • CONSONNI, G. and VERONESE, P. (1992). Conjugate priors for exponential families having quadratic variance functions. J. Amer. Statist. Assoc. 87 1123-1127.
    • (1992) J. Amer. Statist. Assoc. , vol.87 , pp. 1123-1127
    • Consonni, G.1    Veronese, P.2
  • 6
    • 0000811835 scopus 로고
    • Conjugate priors for exponential families
    • DIACONIS, P. and YLVISAKER, D. (1979). Conjugate priors for exponential families. Ann. Statist. 7 269-281.
    • (1979) Ann. Statist. , vol.7 , pp. 269-281
    • Diaconis, P.1    Ylvisaker, D.2
  • 7
    • 0039575485 scopus 로고
    • The stricture of semi-simple Lie algebras
    • DYNKIN, E. (1950). The stricture of semi-simple Lie algebras. Uspehi Mat. Nauk (N.S.) 2 59-127. Am. Math. Soc. Transl. 17 (1950).
    • (1950) Uspehi Mat. Nauk (N.S.) , vol.2 , pp. 59-127
    • Dynkin, E.1
  • 8
    • 0040868074 scopus 로고
    • DYNKIN, E. (1950). The stricture of semi-simple Lie algebras. Uspehi Mat. Nauk (N.S.) 2 59-127. Am. Math. Soc. Transl. 17 (1950).
    • (1950) Am. Math. Soc. Transl. , vol.17
  • 9
    • 0000004746 scopus 로고
    • Some classes of orthogonal polynomials associated with martingales
    • FEINSILVER, P. (1986). Some classes of orthogonal polynomials associated with martingales. Proc. Amer. Math. Soc. 98 298-302.
    • (1986) Proc. Amer. Math. Soc. , vol.98 , pp. 298-302
    • Feinsilver, P.1
  • 10
    • 0003800332 scopus 로고
    • Orthogonal polynomials and coherent states
    • Plenum New York
    • FEINSILVER, P. (1991). Orthogonal polynomials and coherent states. Symmetries in Science 5 159-172. Plenum New York.
    • (1991) Symmetries in Science , vol.5 , pp. 159-172
    • Feinsilver, P.1
  • 11
    • 21344449482 scopus 로고
    • Conjugate parametrizations for natural exponential families
    • GUTIERREZ-PEÑA, E. and SMITH, A. F. M. (1995). Conjugate parametrizations for natural exponential families. J. Amer. Statist. Assoc. 90 1347-1356.
    • (1995) J. Amer. Statist. Assoc. , vol.90 , pp. 1347-1356
    • Gutierrez-Peña, E.1    Smith, A.F.M.2
  • 15
    • 0030356453 scopus 로고    scopus 로고
    • On the determinant of the second derivative of the Laplace transform
    • KOKONENDJI, C. and SESHADRI, V. (1996). On the determinant of the second derivative of the Laplace transform. Ann. Statist. 24 1813-1827.
    • (1996) Ann. Statist. , vol.24 , pp. 1813-1827
    • Kokonendji, C.1    Seshadri, V.2
  • 17
    • 0003336053 scopus 로고
    • Lectures on natural exponential families and their variance-functions
    • LETAC, G. (1992). Lectures on natural exponential families and their variance-functions. Monograf. Mat. 5.
    • (1992) Monograf. Mat. , vol.5
    • Letac, G.1
  • 18
    • 0002757787 scopus 로고
    • Natural real exponential families with cubic variance-functions
    • LETAC, G. and MORA, M. (1990). Natural real exponential families with cubic variance-functions. Ann. Statist. 18 1-37.
    • (1990) Ann. Statist. , vol.18 , pp. 1-37
    • Letac, G.1    Mora, M.2
  • 19
    • 84960600688 scopus 로고
    • Orthogonal polynomsysteme mit einer besonderen Gestalt der erzengenden function
    • MEIXNER, J. (1934). Orthogonal Polynomsysteme mit einer besonderen Gestalt der erzengenden Function. J. London Math. Soc. 9 6-13.
    • (1934) J. London Math. Soc. , vol.9 , pp. 6-13
    • Meixner, J.1
  • 21
    • 0002233396 scopus 로고
    • Natural exponential families with quadratic variance-function
    • MORRIS, C. N. (1982). Natural exponential families with quadratic variance-function. Ann. Statist. 10 65-80.
    • (1982) Ann. Statist. , vol.10 , pp. 65-80
    • Morris, C.N.1
  • 24
    • 0001676470 scopus 로고
    • Diagonality of the Bhattacharyya matrix as a characterization
    • SHANBHAG, D. N. (1979). Diagonality of the Bhattacharyya matrix as a characterization. Theory Probab. Appl. 24 430-433.
    • (1979) Theory Probab. Appl. , vol.24 , pp. 430-433
    • Shanbhag, D.N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.