-
1
-
-
84967774571
-
Variational problems with two Phases and their free boundary
-
H.W. Alt L.A. Caffarelli A. Friedman Variational problems with two Phases and their free boundary Trans. Am. Math. Soc. Vol. 282 1984 431 461
-
(1984)
Trans. Am. Math. Soc.
, vol.Vol. 282
, pp. 431-461
-
-
Alt, H.W.1
Caffarelli, L.A.2
Friedman, A.3
-
2
-
-
0000465804
-
Existence theory for a new class of variational problems
-
L. Ambrosio Existence theory for a new class of variational problems Arch. Rat. Mech. Anal. Vol. 111 1990 291 322
-
(1990)
Arch. Rat. Mech. Anal.
, vol.Vol. 111
, pp. 291-322
-
-
Ambrosio, L.1
-
3
-
-
85119465951
-
-
L. Ambrosio and D. Pallara, Partial regularity of free discontinuity sets I, to appear.
-
-
-
-
4
-
-
85119460229
-
-
L. Ambrosio, N. Fusco and D. Pallara, Partial regularity of free discontinuity sets II, to appear.
-
-
-
-
5
-
-
0002874591
-
A variational method in image segmentation: existence and approximation results
-
G. Dal Maso J.-M. Morel S. Solimini A variational method in image segmentation: existence and approximation results Acta Matematica Vol. 168 1992 89 151
-
(1992)
Acta Matematica
, vol.Vol. 168
, pp. 89-151
-
-
Dal Maso, G.1
Morel, J.-M.2
Solimini, S.3
-
6
-
-
85119465409
-
-
G. David and S. Semmes, On the singular sets of minimisers of the Mumford-Shah functional, to appear in J. Math. Pures Appl .
-
-
-
-
7
-
-
85119461292
-
-
1 -arcs for minimisers of the Mumford-Shah functional, to appear.
-
-
-
-
8
-
-
85119460908
-
-
F. Dibos and G. Koepfler, Color segmentation using a variational formulation, preprint CEREMADE.
-
-
-
-
9
-
-
0000532812
-
Existence theorem for a minimum problem with free discontinuity set
-
E. De Giorgi M. Carriero A. Leaci Existence theorem for a minimum problem with free discontinuity set Arch. Rat. Mech. Anal. Vol. 108 1989 195 218
-
(1989)
Arch. Rat. Mech. Anal.
, vol.Vol. 108
, pp. 195-218
-
-
De Giorgi, E.1
Carriero, M.2
Leaci, A.3
-
10
-
-
0003532178
-
Measure theory and fine properties of functions
-
L. Evans R. Gariepy Measure theory and fine properties of functions 1992 CRC Press London
-
(1992)
-
-
Evans, L.1
Gariepy, R.2
-
11
-
-
0003986822
-
The geometry of fractal sets
-
K.J. Falconer The geometry of fractal sets 1985 Cambridge University Press
-
(1985)
-
-
Falconer, K.J.1
-
12
-
-
0003418232
-
Geometric measure theory
-
H. Federer Geometric measure theory 1969 Springer-Verlag
-
(1969)
-
-
Federer, H.1
-
13
-
-
85119461945
-
-
G. Hardy, J. E. Littlewood and G. Pólya, Inequalities Second Edition, Cambridge university Press.
-
-
-
-
14
-
-
0013077224
-
Regularity properties of optimal segmentations
-
U. Massari I. Tamanini Regularity properties of optimal segmentations Journ. reine angew. Math. Vol. 420 1991 61 84
-
(1991)
Journ. reine angew. Math.
, vol.Vol. 420
, pp. 61-84
-
-
Massari, U.1
Tamanini, I.2
-
15
-
-
0003639953
-
Variational methods in Image Segmentation
-
J.-M. Morel S. Solimini Variational methods in Image Segmentation 1994 Birkhauser
-
(1994)
-
-
Morel, J.-M.1
Solimini, S.2
-
16
-
-
0004154258
-
Multiple integrals in the calculus of variations
-
C.B. Morrey Jr. Multiple integrals in the calculus of variations 1966 Springer-Verlag
-
(1966)
-
-
Morrey, C.B.1
-
18
-
-
0001336976
-
On the existence of solutions to a problem in multidimensional segmentation
-
G. Congedo I. Tamanini On the existence of solutions to a problem in multidimensional segmentation Ann. Inst. Henri Poincaré Vol. 8 2 1991 175 195
-
(1991)
Ann. Inst. Henri Poincaré
, vol.Vol. 8
, Issue.2
, pp. 175-195
-
-
Congedo, G.1
Tamanini, I.2
-
19
-
-
0347989657
-
Uniform rectifiability of image segmentations obtained by a variational method
-
F. Dibos Uniform rectifiability of image segmentations obtained by a variational method J. Math. Pures and Appl. Vol. 73 1994 389 412
-
(1994)
J. Math. Pures and Appl.
, vol.Vol. 73
, pp. 389-412
-
-
Dibos, F.1
|