-
2
-
-
34250106586
-
Convergence rates in the strong law for bounded mixing sequences
-
BERBEE, H. (1987). Convergence rates in the strong law for bounded mixing sequences. Probab. Theory Related Fields 74 255-270.
-
(1987)
Probab. Theory Related Fields
, vol.74
, pp. 255-270
-
-
Berbee, H.1
-
3
-
-
0002641260
-
Approximation theorems for independent and weakly dependent random variables
-
BERKES, I. and PHILIPP, W. (1979). Approximation theorems for independent and weakly dependent random variables. Ann. Probab. 7 29-54.
-
(1979)
Ann. Probab.
, vol.7
, pp. 29-54
-
-
Berkes, I.1
Philipp, W.2
-
5
-
-
38249037816
-
The invariance principle for associated processes
-
BIRKEL, T. (1987). The invariance principle for associated processes. Stochastic Process. Appl. 27 57-71.
-
(1987)
Stochastic Process. Appl.
, vol.27
, pp. 57-71
-
-
Birkel, T.1
-
6
-
-
0000552004
-
On the convergence rate in the central limit theorems for associated processes
-
BIRKEL, T. (1988a). On the convergence rate in the central limit theorems for associated processes. Ann. Probab. 16 1685-1698.
-
(1988)
Ann. Probab.
, vol.16
, pp. 1685-1698
-
-
Birkel, T.1
-
7
-
-
0000063095
-
Moment bounds for associated sequences
-
BIRKEL, T. (1988b). Moment bounds for associated sequences. Ann. Probab. 16 1184-1193.
-
(1988)
Ann. Probab.
, vol.16
, pp. 1184-1193
-
-
Birkel, T.1
-
8
-
-
0001214025
-
An invariance principle for weakly associated random variables
-
BURTON, R. M., DABROWSKI, A. R. and DEHLING, H. (1986). An invariance principle for weakly associated random variables. Stochastic Process. Appl. 23 301-306.
-
(1986)
Stochastic Process. Appl.
, vol.23
, pp. 301-306
-
-
Burton, R.M.1
Dabrowski, A.R.2
Dehling, H.3
-
9
-
-
0000145022
-
Central limit theorems for associated random variables and the percolation model
-
COX, J. T. and GRIMMETT, G. (1984). Central limit theorems for associated random variables and the percolation model. Ann. Probab. 12 514-528.
-
(1984)
Ann. Probab.
, vol.12
, pp. 514-528
-
-
Cox, J.T.1
Grimmett, G.2
-
10
-
-
34250407340
-
A new method to prove Strassen type laws of invariance principle
-
CSÖRGO, M. and RÉVÉSZ, P. (1975a). A new method to prove Strassen type laws of invariance principle. I. Z. Wahrsch. Verw. Gebiete 31 255-260.
-
(1975)
I. Z. Wahrsch. Verw. Gebiete
, vol.31
, pp. 255-260
-
-
Csörgo, M.1
Révész, P.2
-
11
-
-
34250405623
-
A new method to prove strassen type laws of invariance principle. II
-
CSÖRGO, M. and RÉVÉSZ, P. (1975b). A new method to prove Strassen type laws of invariance principle. II. Z. Wahrsch. Verw. Gebiete 31 261-269.
-
(1975)
Z. Wahrsch. Verw. Gebiete
, vol.31
, pp. 261-269
-
-
Csörgo, M.1
Révész, P.2
-
13
-
-
0000124326
-
A Berry-Esseen theorem and a functional law of the iterated logarithm for weakly associated random variables
-
DABROWSKI, A. R. and DEHLING, H. (1988). A Berry-Esseen theorem and a functional law of the iterated logarithm for weakly associated random variables. Stochastic Process. Appl. 30 277-289.
-
(1988)
Stochastic Process. Appl.
, vol.30
, pp. 277-289
-
-
Dabrowski, A.R.1
Dehling, H.2
-
14
-
-
0001382704
-
Association of random variables with applications
-
ESARY, J., PROSCHAN, F. and WALKUP, D. (1967). Association of random variables with applications. Ann. Math. Statist. 38 1466-1474.
-
(1967)
Ann. Math. Statist.
, vol.38
, pp. 1466-1474
-
-
Esary, J.1
Proschan, F.2
Walkup, D.3
-
16
-
-
0000411204
-
An approximation of partial sums of independent R.V.'s and the sample DF. I
-
KÓMLOS, J., MAJOR, P. and TUSNADY, G. (1975). An approximation of partial sums of independent R.V.'s and the sample DF. I. Z. Wahrsch. Verw. Gebiete 32 111-131.
-
(1975)
Z. Wahrsch. Verw. Gebiete
, vol.32
, pp. 111-131
-
-
Kómlos, J.1
Major, P.2
Tusnady, G.3
-
17
-
-
34250393026
-
An approximation of partial sums of independent R.V.'s and the sample DF. II
-
KÓMLOS, J., MAJOR, P. and TUSNADY, G. (1976). An approximation of partial sums of independent R.V.'s and the sample DF. II. Z. Wahrsch. Verw. Gebiete 34 35-58.
-
(1976)
Z. Wahrsch. Verw. Gebiete
, vol.34
, pp. 35-58
-
-
Kómlos, J.1
Major, P.2
Tusnady, G.3
-
19
-
-
0002636084
-
Normal fluctuations and the FKG inequalities
-
NEWMAN, C. M. (1980). Normal fluctuations and the FKG inequalities. Comm. Math. Phys. 74 119-128.
-
(1980)
Comm. Math. Phys.
, vol.74
, pp. 119-128
-
-
Newman, C.M.1
-
20
-
-
0002733273
-
A general central limit theorem for FKG systems
-
NEWMAN, C. M. (1983). A general central limit theorem for FKG systems. Comm. Math. Phys. 91 75-80.
-
(1983)
Comm. Math. Phys.
, vol.91
, pp. 75-80
-
-
Newman, C.M.1
-
21
-
-
0001421474
-
An invariance principle for certain dependent sequences
-
NEWMAN, C. M. and WRIGHT, A. L. (1981). An invariance principle for certain dependent sequences. Ann. Probab. 9 671-675.
-
(1981)
Ann. Probab.
, vol.9
, pp. 671-675
-
-
Newman, C.M.1
Wright, A.L.2
-
22
-
-
0003145816
-
Invariance principles for independent and weakly dependent random variables
-
(E. Eberlein and M. Taqque, eds.) Birkhäuser, Boston
-
PHILIPP, W. (1986). Invariance principles for independent and weakly dependent random variables. In Dependence in Probability and Statistics (E. Eberlein and M. Taqque, eds.) 225-268. Birkhäuser, Boston.
-
(1986)
Dependence in Probability and Statistics
, pp. 225-268
-
-
Philipp, W.1
-
23
-
-
0001779250
-
Almost sure invariance principles for partial sums of weakly dependent random variables
-
PHILIPP, W. and STOUT, W. F. (1975). Almost sure invariance principles for partial sums of weakly dependent random variables. Mem. Amer. Math. Soc. 161.
-
(1975)
Mem. Amer. Math. Soc.
, vol.161
-
-
Philipp, W.1
Stout, W.F.2
-
24
-
-
0001509312
-
Positively correlated normal variables are associated
-
PITT, L. D. (1982). Positively correlated normal variables are associated. Ann. Probab. 10 496-499.
-
(1982)
Ann. Probab.
, vol.10
, pp. 496-499
-
-
Pitt, L.D.1
-
25
-
-
0000616137
-
A Berry-Esseen theorem for associated random variables
-
WOOD, T. E. (1983). A Berry-Esseen theorem for associated random variables. Ann. Probab. 11 1042-1047.
-
(1983)
Ann. Probab.
, vol.11
, pp. 1042-1047
-
-
Wood, T.E.1
-
26
-
-
0039075856
-
A local limit theorem for associated sequences
-
WOOD, T. E. (1985). A local limit theorem for associated sequences. Ann. Probab. 13 625-629.
-
(1985)
Ann. Probab.
, vol.13
, pp. 625-629
-
-
Wood, T.E.1
-
27
-
-
0009878656
-
An invariance principle for associated sequences of random variables
-
YU, H. (1985). An invariance principle for associated sequences of random variables. J. Engrg. Math. 2 55-60.
-
(1985)
J. Engrg. Math.
, vol.2
, pp. 55-60
-
-
Yu, H.1
-
28
-
-
0039667956
-
The law of the iterated logarithm for associated random variables
-
YU, H. (1986). The law of the iterated logarithm for associated random variables. Acta Math. Sinica 29 507-511.
-
(1986)
Acta Math. Sinica
, vol.29
, pp. 507-511
-
-
Yu, H.1
-
29
-
-
21144460614
-
A Glivenko-Cantelli lemma and weak convergence for empirical processes of associated sequences
-
YU, H. (1993). A Glivenko-Cantelli lemma and weak convergence for empirical processes of associated sequences. Probab. Theory Related Fields 95 357-370.
-
(1993)
Probab. Theory Related Fields
, vol.95
, pp. 357-370
-
-
Yu, H.1
|