-
1
-
-
0000970787
-
On the Vassiliev knot invariants
-
1. D. Bar-Natan, On the Vassiliev knot invariants, Topology 34 (1995) 423-472.
-
(1995)
Topology
, vol.34
, pp. 423-472
-
-
Bar-Natan, D.1
-
3
-
-
0002839184
-
Moduli spaces for generic low-dimensional complexes
-
3. B. Berceanu and S. Papadima, Moduli spaces for generic low-dimensional complexes, J. of Pure and Applied Algebra 95 (1994) 1-25.
-
(1994)
J. of Pure and Applied Algebra
, vol.95
, pp. 1-25
-
-
Berceanu, B.1
Papadima, S.2
-
4
-
-
84967756664
-
New points of view in knot theory
-
4. J. Birman, New points of view in knot theory, Bull. Amer. Math. Soc. 28 (1993) 253-246.
-
(1993)
Bull. Amer. Math. Soc.
, vol.28
, pp. 253-1246
-
-
Birman, J.1
-
5
-
-
0002071708
-
Knot polynomials and Vassiliev's invariants
-
5. J. Birman and X.-S. Lin, Knot polynomials and Vassiliev's invariants, Invent. Math. 111 (1993) 225-270.
-
(1993)
Invent. Math.
, vol.111
, pp. 225-270
-
-
Birman, J.1
Lin, X.-S.2
-
6
-
-
0003259053
-
Derivatives of links: Milnor's concordance invariants and Massey's products
-
6. T. Cochran, Derivatives of links: Milnor's concordance invariants and Massey's products, Mem. Amer. Math. Soc. 84 (1990) No. 427.
-
(1990)
Mem. Amer. Math. Soc.
, vol.84
, Issue.427
-
-
Cochran, T.1
-
7
-
-
84968491365
-
The classification of links up to link-homotopy
-
7. N. Habegger and X.-S. Lin, The classification of links up to link-homotopy, J. Amer. Math. Soc. 3 (1990) 389-419.
-
(1990)
J. Amer. Math. Soc.
, vol.3
, pp. 389-419
-
-
Habegger, N.1
Lin, X.-S.2
-
8
-
-
0000824944
-
The invertibility problem on amphicheiral excellent knots
-
8. A. Kawauchi, The invertibility problem on amphicheiral excellent knots, Proc. Japan Acad. Ser. A Math. Sci. 55 (1979) 399-402.
-
(1979)
Proc. Japan Acad. Ser. A Math. Sci.
, vol.55
, pp. 399-402
-
-
Kawauchi, A.1
-
9
-
-
84966255430
-
An approach to homotopy classification of links
-
9. J. Levine, An approach to homotopy classification of links, Trans. Amer. Math. Soc. 306 (1988) 361-387.
-
(1988)
Trans. Amer. Math. Soc.
, vol.306
, pp. 361-387
-
-
Levine, J.1
-
11
-
-
0001139908
-
Knots which are not concordant to their reverses
-
11. C. Livingston, Knots which are not concordant to their reverses, Quart. J. Math. Oxford Ser. (2) 34 (1983) 323-328.
-
(1983)
Quart. J. Math. Oxford Ser. (2)
, vol.34
, pp. 323-328
-
-
Livingston, C.1
-
13
-
-
51249166771
-
Moduli spaces for fundamental groups and link invariants derived from the lower central series
-
13. M. Markl and S. Papadima, Moduli spaces for fundamental groups and link invariants derived from the lower central series, Manuscripta Math. 81 (1993) 225-242.
-
(1993)
Manuscripta Math.
, vol.81
, pp. 225-242
-
-
Markl, M.1
Papadima, S.2
-
14
-
-
0001349313
-
Link groups
-
14. J. Milnor, Link groups, Ann. of Math. 59 (1954) 177-195.
-
(1954)
Ann. of Math.
, vol.59
, pp. 177-195
-
-
Milnor, J.1
-
15
-
-
85030009111
-
Isotopy of links
-
Princeton Univ. Press, Princeton
-
15. -, Isotopy of links, Algebraic Geometry and Topology, Princeton Univ. Press, Princeton 1957.
-
(1957)
Algebraic Geometry and Topology
-
-
-
16
-
-
85033638290
-
Campbell-Hausdorff invariants of links
-
to appear
-
16. S. Papadima, Campbell-Hausdorff invariants of links, J. London Math. Soc., to appear.
-
J. London Math. Soc.
-
-
Papadima, S.1
-
17
-
-
34249960869
-
Ribbon graphs and their invariants derived from quantum groups
-
17. N. Yu. Reshetikhin and V. G. Turaev, Ribbon graphs and their invariants derived from quantum groups, Comm. in Math. Physics 127 (1990) 1-26.
-
(1990)
Comm. in Math. Physics
, vol.127
, pp. 1-26
-
-
Reshetikhin, N.Yu.1
Turaev, V.G.2
-
18
-
-
0542373499
-
Invariants of 3-manifolds via link polynomials and quantum groups
-
18. -, Invariants of 3-manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991) 547-597.
-
(1991)
Invent. Math.
, vol.103
, pp. 547-597
-
-
-
20
-
-
0001215918
-
Homology and central series of groups
-
20. J. Stallings, Homology and central series of groups, J. of Algebra 20 (1965) 170-181.
-
(1965)
J. of Algebra
, vol.20
, pp. 170-181
-
-
Stallings, J.1
-
21
-
-
0001349258
-
Non-invertible knots exist
-
21. H. Trotter, Non-invertible knots exist, Topology 2 (1963) 275-280.
-
(1963)
Topology
, vol.2
, pp. 275-280
-
-
Trotter, H.1
|