메뉴 건너뛰기




Volumn 64, Issue 1, 1996, Pages 17-30

How many random walks correspond to a given set of return probabilities to the origin?

Author keywords

Chain sequences; Continued fractions; Random walks

Indexed keywords


EID: 0030295795     PISSN: 03044149     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0304-4149(96)00083-X     Document Type: Article
Times cited : (1)

References (9)
  • 3
    • 0042309538 scopus 로고
    • Combinatorical aspects of continued fractions
    • P. Flajolet, Combinatorical aspects of continued fractions, Discrete Math. 32 (1980) 125-162.
    • (1980) Discrete Math. , vol.32 , pp. 125-162
    • Flajolet, P.1
  • 4
    • 84971110383 scopus 로고
    • Random motion and analytic continued fractions
    • I.J. Good, Random motion and analytic continued fractions, Proc. Camb. Phil. Soc. 54 (1958) 43-47.
    • (1958) Proc. Camb. Phil. Soc. , vol.54 , pp. 43-47
    • Good, I.J.1
  • 5
    • 61449096097 scopus 로고
    • Random walks. I1
    • S. Karlin and J. McGregor, Random walks, I1. J. Math. 3 (1959) 66-81.
    • (1959) J. Math. , vol.3 , pp. 66-81
    • Karlin, S.1    McGregor, J.2
  • 6
    • 38249040783 scopus 로고
    • Principal representations and canonical moment sequences for distributions on an interval
    • M. Skibinsky, Principal representations and canonical moment sequences for distributions on an interval, J. Math. Anal. Appl. 120 (1986) 95-120.
    • (1986) J. Math. Anal. Appl. , vol.120 , pp. 95-120
    • Skibinsky, M.1
  • 7
    • 0027887712 scopus 로고
    • Random walk polynomials and random walk measures
    • E.A. Van Doorn and P. Schrijner, Random walk polynomials and random walk measures, J. Comput. Appl. Math. 49 (1993) 289-296.
    • (1993) J. Comput. Appl. Math. , vol.49 , pp. 289-296
    • Van Doorn, E.A.1    Schrijner, P.2
  • 9
    • 84972527669 scopus 로고
    • An application of orthogonal polynomials to random walks
    • T.A. Whitehurst, An application of orthogonal polynomials to random walks, Pacific J. Math. 99 (1982) 205-213.
    • (1982) Pacific J. Math. , vol.99 , pp. 205-213
    • Whitehurst, T.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.