-
1
-
-
84968476146
-
The integral of a symmetric, unimodal function over a symmetric, convex set and some probability inequalities
-
[1] Anderson, T. W. (1955). The integral of a symmetric, unimodal function over a symmetric, convex set and some probability inequalities. Proc. Amer. Math. Soc. 6 170-176.
-
(1955)
Proc. Amer. Math. Soc.
, vol.6
, pp. 170-176
-
-
Anderson, T.W.1
-
2
-
-
0001611337
-
A test of homogeneity of means under restricted alternatives
-
[2] Bartholomew, D. J. (1961). A test of homogeneity of means under restricted alternatives (with discussion). J. R. Statist. Soc. B 23 239-281.
-
(1961)
J. R. Statist. Soc. B
, vol.23
, pp. 239-281
-
-
Bartholomew, D.J.1
-
3
-
-
0004102229
-
-
Academic Press, New York
-
[3] Dharmadhikari, S., and Joag-dev, K. (1988). Unimodality, Convexity, and Applications. Academic Press, New York.
-
(1988)
Unimodality, Convexity, and Applications
-
-
Dharmadhikari, S.1
Joag-Dev, K.2
-
4
-
-
0001623641
-
Reflection groups, generalized Schur functions and the geometry of majorization
-
[4] Eaton, M. L., and Perlman, M. D. (1977). Reflection groups, generalized Schur functions and the geometry of majorization. Ann. Probab. 5 829-860.
-
(1977)
Ann. Probab.
, vol.5
, pp. 829-860
-
-
Eaton, M.L.1
Perlman, M.D.2
-
5
-
-
21844515017
-
Monotonicity properties of the power functions of likelihood ratio tests for normal mean hypotheses constrained by a linear space and a cone
-
[5] Hu, X., and Wright, F. T. (1994). Monotonicity properties of the power functions of likelihood ratio tests for normal mean hypotheses constrained by a linear space and a cone. Ann. Statist. 22 1547-1554.
-
(1994)
Ann. Statist.
, vol.22
, pp. 1547-1554
-
-
Hu, X.1
Wright, F.T.2
-
6
-
-
0000367034
-
Majorization in multivariate distributions
-
[6] Marshall, A. W., and Olkin, I. (1974). Majorization in multivariate distributions. Ann. Statist. 2 1189-1200.
-
(1974)
Ann. Statist.
, vol.2
, pp. 1189-1200
-
-
Marshall, A.W.1
Olkin, I.2
-
8
-
-
0011632262
-
The integral of an invariant unimodal function over an invariant convex set - An inequality and applications
-
[8] Mudholkar, G. S. (1966). The integral of an invariant unimodal function over an invariant convex set - An inequality and applications. Proc. Amer. Math. Soc. 17 299-306.
-
(1966)
Proc. Amer. Math. Soc.
, vol.17
, pp. 299-306
-
-
Mudholkar, G.S.1
-
9
-
-
0000001456
-
A probability inequality for elliptically contoured densities with applications in order restricted inference
-
[9] Mukerjee, S. P., Robertson, T., and Wright, F. T. (1986). A probability inequality for elliptically contoured densities with applications in order restricted inference. Ann. Statist. 14 1544-1554.
-
(1986)
Ann. Statist.
, vol.14
, pp. 1544-1554
-
-
Mukerjee, S.P.1
Robertson, T.2
Wright, F.T.3
-
10
-
-
0000372698
-
The likelihood ratio test of normal mean with hypothesis determined by a convex polyhedral cone and the monotonicity of its power function
-
[10] Nomakuchi, K. (1983). The likelihood ratio test of normal mean with hypothesis determined by a convex polyhedral cone and the monotonicity of its power function. Mem. Fac. Sci., Kyushu Univ. A 37 195-209.
-
(1983)
Mem. Fac. Sci., Kyushu Univ. A
, vol.37
, pp. 195-209
-
-
Nomakuchi, K.1
-
12
-
-
0001495406
-
One-sided testing problems in multivariate analysis
-
[12] Perlman, M. D. (1969). One-sided testing problems in multivariate analysis. Ann. Math. Statist. 40 549-567.
-
(1969)
Ann. Math. Statist.
, vol.40
, pp. 549-567
-
-
Perlman, M.D.1
-
13
-
-
0000602791
-
Testing linear hypotheses under restricted alternatives
-
[13] Pincus, R. (1975). Testing linear hypotheses under restricted alternatives. Math. Operationsforsch. Statist. 5 733-751.
-
(1975)
Math. Operationsforsch. Statist.
, vol.5
, pp. 733-751
-
-
Pincus, R.1
-
14
-
-
0003860260
-
-
Wiley, New York
-
[14] Robertson, T., Wright, F. T., and Dykstra, R. L. (1988). Order Restricted Statistical Inference. Wiley, New York.
-
(1988)
Order Restricted Statistical Inference
-
-
Robertson, T.1
Wright, F.T.2
Dykstra, R.L.3
-
15
-
-
38249013196
-
On power functions of the likelihood ratio tests for the simple loop order in normal means: Unequal sample sizes
-
[15] Singh, B., and Schell, M. J. (1992). On power functions of the likelihood ratio tests for the simple loop order in normal means: Unequal sample sizes. Statist. Probab. Lett. 14 253-267.
-
(1992)
Statist. Probab. Lett.
, vol.14
, pp. 253-267
-
-
Singh, B.1
Schell, M.J.2
-
16
-
-
0000389246
-
The power functions of the likelihood ratio tests for a simple tree order in normal means: Unequal weights
-
[16] Singh, B., Schell, M. J., and Wright, F. T. (1993). The power functions of the likelihood ratio tests for a simple tree order in normal means: Unequal weights. Commun. Statist. Theor. Methods 22 425-449.
-
(1993)
Commun. Statist. Theor. Methods
, vol.22
, pp. 425-449
-
-
Singh, B.1
Schell, M.J.2
Wright, F.T.3
-
17
-
-
84972894654
-
The power functions of the likelihood ratio tests for a simply ordered trend in normal means
-
[17] Singh, B., and Wright, F. T. (1989). The power functions of the likelihood ratio tests for a simply ordered trend in normal means. Commun. Statist. Theor. Methods 18 2351-2392.
-
(1989)
Commun. Statist. Theor. Methods
, vol.18
, pp. 2351-2392
-
-
Singh, B.1
Wright, F.T.2
|