메뉴 건너뛰기




Volumn 13, Issue 2-4, 1996, Pages 171-183

A systematic method for rational definition of plant diagnostic symptoms by self-organizing neural networks

Author keywords

diversification of feature description; fault diagnosis; information derivation; Kohonen network; nuclear plant

Indexed keywords

COMPUTER SIMULATION; DATA ACQUISITION; FAILURE ANALYSIS; NUCLEAR POWER PLANTS; SIMULATORS; VECTORS;

EID: 0030271848     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/0925-2312(95)00090-9     Document Type: Conference Paper
Times cited : (10)

References (16)
  • 1
    • 0011796073 scopus 로고
    • A strategy for minimizing common mode human error in executing critical functions and tasks
    • Tennessee
    • [1] L. Beltracchi and R.W. Lindsay, A strategy for minimizing common mode human error in executing critical functions and tasks, Proc. 8th Power Plant Dynamics, Control and Testing Symp., Tennessee (1992) 19.01-19.07.
    • (1992) Proc. 8th Power Plant Dynamics, Control and Testing Symp. , pp. 1901-1907
    • Beltracchi, L.1    Lindsay, R.W.2
  • 2
    • 0028494126 scopus 로고
    • Incipient multiple fault diagnosis in real time with application to large-scale systems
    • [2] H. Chung, Z. Bien, J. Park and P. Seong, Incipient multiple fault diagnosis in real time with application to large-scale systems, IEEE Trans. Nuclear Science 41(4) (1994) 1692-1703.
    • (1994) IEEE Trans. Nuclear Science , vol.41 , Issue.4 , pp. 1692-1703
    • Chung, H.1    Bien, Z.2    Park, J.3    Seong, P.4
  • 3
    • 0028430715 scopus 로고
    • Frequency domain approach to optimally robust residual generation and evaluation for model-based fault diagnosis
    • [3] P.M. Frank and X. Ding, Frequency domain approach to optimally robust residual generation and evaluation for model-based fault diagnosis, Automatica 30(5) (1994) 789-804.
    • (1994) Automatica , vol.30 , Issue.5 , pp. 789-804
    • Frank, P.M.1    Ding, X.2
  • 4
    • 0028735137 scopus 로고
    • Nonlinear data compression and representation by combining self-organizing map and subspace
    • Orlando, FL
    • [4] J. Joutsensalo, Nonlinear data compression and representation by combining self-organizing map and subspace, Proc. 1994 IEEE Int. Conf. on Neural Networks, Orlando, FL (1994) 637-640.
    • (1994) Proc. 1994 IEEE Int. Conf. on Neural Networks , pp. 637-640
    • Joutsensalo, J.1
  • 8
    • 0025489075 scopus 로고
    • The self-organizing map
    • [8] T. Kohonen, The Self-Organizing Map, Proc. IEEE 78(9) (1990) 1464-1480.
    • (1990) Proc. IEEE , vol.78 , Issue.9 , pp. 1464-1480
    • Kohonen, T.1
  • 9
    • 0028464593 scopus 로고
    • Fault diagnosis via neural networks: The boltzmann machine
    • [9] M. Marseguerra and E. Zio, Fault diagnosis via neural networks: The Boltzmann Machine, Nuclear Science and Engineering 117 (1994) 194-200.
    • (1994) Nuclear Science and Engineering , vol.117 , pp. 194-200
    • Marseguerra, M.1    Zio, E.2
  • 10
  • 11
    • 0011878471 scopus 로고
    • Unsupervised learning for feature extraction
    • J.M. Zurada, R.J. Marks II and C.J. Robinson, eds., IEEE Press, NY
    • [11] E. Oja and J. Lampinen, Unsupervised learning for feature extraction, in: J.M. Zurada, R.J. Marks II and C.J. Robinson, eds., Computational Intelligence Imitating Life (IEEE Press, NY, 1994).
    • (1994) Computational Intelligence Imitating Life
    • Oja, E.1    Lampinen, J.2
  • 12
    • 0027634778 scopus 로고
    • Generalized clustering networks and kohonen's self-organizing scheme
    • [12] N.R. Pal, J.C. Bezdek and E.C.-K. Tsao, Generalized clustering networks and Kohonen's self-organizing scheme, IEEE Trans. Neural Networks 4(4) (1993) 549-557.
    • (1993) IEEE Trans. Neural Networks , vol.4 , Issue.4 , pp. 549-557
    • Pal, N.R.1    Bezdek, J.C.2    Tsao, E.C.-K.3
  • 13
    • 0028375622 scopus 로고
    • Incipient fault detection and identification in progress systems using accelerated neural network learning
    • [13] A.G. Parlos, J. Muthusami and A.F. Atiya, Incipient fault detection and identification in progress systems using accelerated neural network learning, Nuclear Technology 105 (1994) 145-161.
    • (1994) Nuclear Technology , vol.105 , pp. 145-161
    • Parlos, A.G.1    Muthusami, J.2    Atiya, A.F.3
  • 14
    • 0027625708 scopus 로고
    • Optimal unknown input distribution matrix selection in robust fault diagnosis
    • [14] R.J. Patton and J. Chen, Optimal unknown input distribution matrix selection in robust fault diagnosis, Automatica 29(4) (1993) 837-841.
    • (1993) Automatica , vol.29 , Issue.4 , pp. 837-841
    • Patton, R.J.1    Chen, J.2
  • 15
    • 0024772340 scopus 로고
    • Statistical method application to knowledge base building for reactor accident diagnosis system
    • [15] K. Yoshida, M. Yokobayashi, K. Matsumoto and A. Kohsaka, Statistical method application to knowledge base building for reactor accident diagnosis system, J. Nucl. Sci. Tech. 26 (1989) 1002-1012.
    • (1989) J. Nucl. Sci. Tech. , vol.26 , pp. 1002-1012
    • Yoshida, K.1    Yokobayashi, M.2    Matsumoto, K.3    Kohsaka, A.4
  • 16
    • 0027629412 scopus 로고
    • Rival penalized competitive learning for clustering analysis, RBF net, and curve detection
    • [16] L. Xu, A. Krzyzak and E. Oja, Rival penalized competitive learning for clustering analysis, RBF net, and curve detection, IEEE Trans. Neural Networks 4(4) (1993) 636-649.
    • (1993) IEEE Trans. Neural Networks , vol.4 , Issue.4 , pp. 636-649
    • Xu, L.1    Krzyzak, A.2    Oja, E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.