메뉴 건너뛰기




Volumn 13, Issue 2-4, 1996, Pages 313-346

Optimal learning in artificial neural networks: A review of theoretical results

Author keywords

connectionist models; learning algorithms; optimal learning

Indexed keywords

LEARNING SYSTEMS; MATHEMATICAL MODELS; NEURAL NETWORKS; OPTIMIZATION; PROBLEM SOLVING;

EID: 0030271834     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/0925-2312(95)00032-1     Document Type: Article
Times cited : (37)

References (81)
  • 1
    • 0023968207 scopus 로고
    • Connectionism and cognitive architecture: A critical analysis
    • A Cognition Special issue
    • [1] J. Fodor and Z. Pylyshyn, Connectionism and cognitive architecture: A critical analysis, Connections and Symbols (1989) 3-72. A Cognition Special issue.
    • (1989) Connections and Symbols , pp. 3-72
    • Fodor, J.1    Pylyshyn, Z.2
  • 4
    • 0000646059 scopus 로고
    • Learning internal representations by error propagation
    • D. Rumelhart and J. McClelland, eds., ch. 8, MIT Press, Cambridge, Reprinted in [81]
    • [4] D. Rumelhart, G. Hinton and R. Williams, Learning internal representations by error propagation, in Parallel Distributed Processing (D. Rumelhart and J. McClelland, eds.), vol. 1, ch. 8, pp. 318-362 (MIT Press, Cambridge, 1986). Reprinted in [81].
    • (1986) Parallel Distributed Processing , vol.1 , pp. 318-362
    • Rumelhart, D.1    Hinton, G.2    Williams, R.3
  • 8
  • 9
    • 0026955101 scopus 로고
    • Can backpropagation error surface not have local minima?
    • Nov.
    • [9] X. Yu, Can backpropagation error surface not have local minima?, IEEE Trans. Neural Networks 3 (Nov. 1992) 1019-1020.
    • (1992) IEEE Trans. Neural Networks , vol.3 , pp. 1019-1020
    • Yu, X.1
  • 13
    • 85030269434 scopus 로고    scopus 로고
    • Optimal convergence of pattern mode backpropagation
    • Tech. Rep. DSI-8-94, Dipartimento di Sistemi e Informatica, Università degli Studi di Firenze, Firenze, Italy, April 1994, to appear
    • [13] M. Gori and M. Maggini, Optimal convergence of pattern mode backpropagation, Tech. Rep. DSI-8-94, Dipartimento di Sistemi e Informatica, Università degli Studi di Firenze, Firenze, Italy, April 1994, to appear in IEEE Trans. Neural Networks.
    • IEEE Trans. Neural Networks
    • Gori, M.1    Maggini, M.2
  • 14
    • 0040864042 scopus 로고
    • Minkowski-r back-propagation: Learning in connectionist models with non-euclidean error signals
    • (D. Anderson, ed.), Denver, CO
    • [14] S. Hanson and D. Burr, Minkowski-r back-propagation: Learning in connectionist models with non-euclidean error signals, in Advances in Neural Information Processing Systems (D. Anderson, ed.), (Denver, CO, 1987) 348-357.
    • (1987) Advances in Neural Information Processing Systems , pp. 348-357
    • Hanson, S.1    Burr, D.2
  • 15
    • 0025754995 scopus 로고
    • A norm selection criterion for the generalized delta rule
    • Jan.
    • [15] P. Burrascano, A norm selection criterion for the generalized delta rule, IEEE Trans. Neural Networks 2 (Jan. 1991) 125-130.
    • (1991) IEEE Trans. Neural Networks , vol.2 , pp. 125-130
    • Burrascano, P.1
  • 16
    • 0024874676 scopus 로고
    • Backpropagation separates when perceptrons do
    • Washington, DC IEEE Press, June
    • [16] E. Sontag and H. Sussman, Backpropagation separates when perceptrons do, in Int. Joint Conf. on Neural Networks, vol. 1, Washington, DC (IEEE Press, June 1989) 639-642.
    • (1989) Int. Joint Conf. on Neural Networks , vol.1 , pp. 639-642
    • Sontag, E.1    Sussman, H.2
  • 17
    • 0024732792 scopus 로고
    • Connectionist learning procedures
    • [17] G. Hinton, Connectionist learning procedures, Artificial Intelligence 40 (1989) 185-234.
    • (1989) Artificial Intelligence , vol.40 , pp. 185-234
    • Hinton, G.1
  • 18
    • 0002099561 scopus 로고
    • Supervised learning of probability distributions by neural networks
    • D. Anderson, ed.
    • [18] E. Baum and F. Wilczek, Supervised learning of probability distributions by neural networks, in Advances in Neural Information Processing Systems, D. Anderson, ed. (1988) 52-61.
    • (1988) Advances in Neural Information Processing Systems , pp. 52-61
    • Baum, E.1    Wilczek, F.2
  • 19
    • 0001336749 scopus 로고
    • Accelerated learning in layered neural networks
    • [19] S, Solla, E. Levin and M. Fleisher, Accelerated learning in layered neural networks, Complex Syst. 2 (1988) 625-639.
    • (1988) Complex Syst. , vol.2 , pp. 625-639
    • Solla, S.1    Levin, E.2    Fleisher, M.3
  • 20
    • 0000378796 scopus 로고
    • Backpropagation improvements based on heuristic arguments
    • San Diego, CA
    • [20] T. Samad, Backpropagation improvements based on heuristic arguments, in Int. Joint Conf. on Neural Networks, vol. 1, San Diego, CA (1990) 565-568.
    • (1990) Int. Joint Conf. on Neural Networks , vol.1 , pp. 565-568
    • Samad, T.1
  • 21
    • 0026267356 scopus 로고
    • Backpropagation based on the logarithmic error function and elimination of local minima
    • Singapore
    • [21] K. Matsuoka and J. Yi, Backpropagation based on the logarithmic error function and elimination of local minima, in Int. Joint Conf. on Neural Networks, Singapore (1991) 1117-1122.
    • (1991) Int. Joint Conf. on Neural Networks , pp. 1117-1122
    • Matsuoka, K.1    Yi, J.2
  • 22
    • 0000672424 scopus 로고
    • Fast learning in networks of locally-tuned processing units
    • [22] J. Moody and C. Darken, Fast learning in networks of locally-tuned processing units, Neural Computat. 1 (1989) 281-294.
    • (1989) Neural Computat. , vol.1 , pp. 281-294
    • Moody, J.1    Darken, C.2
  • 23
    • 0001109377 scopus 로고
    • Learning internal representation of gray scale images: An example of extensional programming
    • Seattle, WA
    • [23] G. Cottrel, P. Munro and D. Zipser, Learning internal representation of gray scale images: an example of extensional programming, in 9th Annual Cognitive Science Society Conf., Seattle, WA (1987).
    • (1987) 9th Annual Cognitive Science Society Conf.
    • Cottrel, G.1    Munro, P.2    Zipser, D.3
  • 24
    • 0020118274 scopus 로고
    • Neural networks and physical systems with emergent collective computational abilities
    • Also in Neurocomputing MIT Press
    • [24] J. Hopfield, Neural networks and physical systems with emergent collective computational abilities, Proc. Nat. Acad. Sci. USA 79 (1982) 2554-2558. Also in Neurocomputing (MIT Press, 1988).
    • (1982) Proc. Nat. Acad. Sci. USA , vol.79 , pp. 2554-2558
    • Hopfield, J.1
  • 25
    • 0001578518 scopus 로고
    • A learning algorithm for Boltzmann machines
    • [25] D. Ackley, G. Hinton and T. Sejnowski, A learning algorithm for Boltzmann machines, Cognitive Sci. 9 (1985) 147-169.
    • (1985) Cognitive Sci. , vol.9 , pp. 147-169
    • Ackley, D.1    Hinton, G.2    Sejnowski, T.3
  • 28
    • 0002278965 scopus 로고
    • Adaptive switching circuits
    • New York, IRE
    • [28] B. Widrow and M. Hoff, Adaptive switching circuits, in 1960 IRE WESCON Convention Record, 4 (New York, IRE, 1960) 96-104.
    • (1960) 1960 IRE WESCON Convention Record , vol.4 , pp. 96-104
    • Widrow, B.1    Hoff, M.2
  • 29
    • 0025488663 scopus 로고
    • 30 Years of adaptive neural networks: Perceptron, Madaline, and Backpropagation
    • Sep.
    • [29] B. Widrow, 30 years of adaptive neural networks: Perceptron, Madaline, and Backpropagation, IEEE Trans. Neural Networks 78 (Sep. 1990) 1415-1442.
    • (1990) IEEE Trans. Neural Networks , vol.78 , pp. 1415-1442
    • Widrow, B.1
  • 30
    • 0024774330 scopus 로고
    • Neural networks and principal component analysis: Learning from examples without local minima
    • [30] P. Baldi and K. Hornik, Neural networks and principal component analysis: Learning from examples without local minima, Neural Networks 2 (1989) 53-58.
    • (1989) Neural Networks , vol.2 , pp. 53-58
    • Baldi, P.1    Hornik, K.2
  • 31
    • 34250800205 scopus 로고
    • Back-propagation fails to separate where perceptrons succeed
    • [31] M. Brady, R. Raghavan and J. Slawny, Back-propagation fails to separate where perceptrons succeed, IEEE Trans. Circuits and Systems 36 (1989) 665-674.
    • (1989) IEEE Trans. Circuits and Systems , vol.36 , pp. 665-674
    • Brady, M.1    Raghavan, R.2    Slawny, J.3
  • 32
    • 0025482216 scopus 로고
    • Performance surfaces of a single-layer perceptron
    • Sep.
    • [32] J. Shynk, Performance surfaces of a single-layer perceptron, IEEE Trans. Neural Networks 1 (Sep. 1990) 268-274.
    • (1990) IEEE Trans. Neural Networks , vol.1 , pp. 268-274
    • Shynk, J.1
  • 33
    • 0024124741 scopus 로고
    • Improving the learning rate of back-propagation with the gradient reuse algorithm
    • San Diego IEEE, New York, 1988
    • [33] D. Hush and J. Salas, Improving the learning rate of back-propagation with the gradient reuse algorithm, in IEEE Int. Conf. on Neural Networks, vol. 1, San Diego (1988) 441-447 (IEEE, New York, 1988).
    • (1988) IEEE Int. Conf. on Neural Networks , vol.1 , pp. 441-447
    • Hush, D.1    Salas, J.2
  • 36
    • 0026624309 scopus 로고
    • Using the symmetries of multi-layered networks to reduce the weight space
    • Seattle IEEE, July 8-12
    • [36] F. Jordan and G. Clement, Using the symmetries of multi-layered networks to reduce the weight space, in Int. Joint Conf. on Neural Networks. vol. 2, Seattle (IEEE, July 8-12, 1991) 391-396.
    • (1991) Int. Joint Conf. on Neural Networks , vol.2 , pp. 391-396
    • Jordan, F.1    Clement, G.2
  • 37
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • [37] G. Cybenko, Approximation by superpositions of a sigmoidal function, Math. Control, Signals, and Systems 3 (1989) 303-314.
    • (1989) Math. Control, Signals, and Systems , vol.3 , pp. 303-314
    • Cybenko, G.1
  • 38
    • 0024866495 scopus 로고
    • On the approximate realization of continuous mappings by neural networks
    • [38] K. Funahashi, On the approximate realization of continuous mappings by neural networks, Neural Networks 2 (1989) 183-192.
    • (1989) Neural Networks , vol.2 , pp. 183-192
    • Funahashi, K.1
  • 39
    • 0024878952 scopus 로고
    • Theory of the backpropagation neural network
    • Washington IEEE, New York, 1989
    • [39] R. Hecht-Nielsen, Theory of the backpropagation neural network, in Int. Joint Conf. on Neural Networks, vol. 1, Washington (1989) (IEEE, New York, 1989) 593-605.
    • (1989) Int. Joint Conf. on Neural Networks , vol.1 , pp. 593-605
    • Hecht-Nielsen, R.1
  • 40
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • [40] K. Hornik, M. Stinchcombe and H. White, Multilayer feedforward networks are universal approximators, Neural Networks 2 (1989) 359-366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 41
    • 0025792215 scopus 로고
    • Bounds on the number of hidden neurons in multi-layer perceptrons
    • Jan.
    • [41] S. Huang and Y. Huang, Bounds on the number of hidden neurons in multi-layer perceptrons, IEEE Trans Neural Networks 2 (Jan. 1991) 47-55.
    • (1991) IEEE Trans Neural Networks , vol.2 , pp. 47-55
    • Huang, S.1    Huang, Y.2
  • 42
    • 0025383696 scopus 로고
    • Phonetically-based multi-layered networks for vowel classification
    • Feb.
    • [42] Y. Bengio, P. Cosi and R. De Mori, Phonetically-based multi-layered networks for vowel classification, Speech Communication 9 (Feb. 1990) 15-29.
    • (1990) Speech Communication , vol.9 , pp. 15-29
    • Bengio, Y.1    Cosi, P.2    De Mori, R.3
  • 43
    • 0002291365 scopus 로고
    • Generalization and network design strategies
    • North-Holland
    • [43] Y. le Cun, Generalization and network design strategies, in Connectionism in Perspective (North-Holland, 1989) 143-155.
    • (1989) Connectionism in Perspective , pp. 143-155
    • Le Cun, Y.1
  • 44
    • 23944436740 scopus 로고
    • A theoretical framework for backpropagation
    • D. Touretzky, G. Hinton and T. Sejnowski, eds., (San Mateo, CA) Morgan Kauffman
    • [44] Y. le Cun, A theoretical framework for backpropagation, in 1988 Connectionist Models Summer School, D. Touretzky, G. Hinton and T. Sejnowski, eds., (San Mateo, CA) (Morgan Kauffman, 1988) 21-28.
    • (1988) 1988 Connectionist Models Summer School , pp. 21-28
    • Le Cun, Y.1
  • 47
    • 0011794936 scopus 로고
    • Center for Computational Research in Economics and Management Science, Massachusetts Institute of Technology, Cambridge, MA, April
    • [47] D. Parker, Learning logic, Tech. Rep. TR-47, Center for Computational Research in Economics and Management Science, Massachusetts Institute of Technology, Cambridge, MA, April 1985.
    • (1985) Learning Logic, Tech. Rep. TR-47
    • Parker, D.1
  • 48
    • 0002824144 scopus 로고
    • Learning process in an asymmetric threshold network
    • F.F. Soulie, E. Bienenstock and G. Weisbuch, eds. Les Houches, France, Springer-Verlag
    • [48] Y. le Cun, Learning process in an asymmetric threshold network, in Disordered Systems and Biological Organization, F.F. Soulie, E. Bienenstock and G. Weisbuch, eds. (Les Houches, France, Springer-Verlag, 1986) 233-240.
    • (1986) Disordered Systems and Biological Organization , pp. 233-240
    • Le Cun, Y.1
  • 49
    • 0002493084 scopus 로고
    • Speech pattern discrimination and multi-layered perceptrons
    • [49] H. Bourlard and C. Wellekens, Speech pattern discrimination and multi-layered perceptrons, Computer Speech and Language 3 (1989) 1-19.
    • (1989) Computer Speech and Language , vol.3 , pp. 1-19
    • Bourlard, H.1    Wellekens, C.2
  • 50
    • 0023936027 scopus 로고
    • Learning the hidden structure of speech
    • [50] J. Elman and D. Zipser, Learning the hidden structure of speech, J. Acoustical Soc. America 83 (4) (1988) 1615-1626.
    • (1988) J. Acoustical Soc. America , vol.83 , Issue.4 , pp. 1615-1626
    • Elman, J.1    Zipser, D.2
  • 51
    • 38249011830 scopus 로고
    • Learning the dynamic nature of speech with back-propagation for sequences
    • May. Special issue on Artificial Neural Networks
    • [51] Y. Bengio, R. De Mori and M. Gori, Learning the dynamic nature of speech with back-propagation for sequences, Pattern Recognition Letters 13 (May 1992) 375-386. Special issue on Artificial Neural Networks.
    • (1992) Pattern Recognition Letters , vol.13 , pp. 375-386
    • Bengio, Y.1    De Mori, R.2    Gori, M.3
  • 53
    • 0001969496 scopus 로고
    • Learning set of filters using back-propagation
    • [53] D. Plaut and G. Hinton, Learning set of filters using back-propagation, Computer Speech and Language 2 (1987) 35-61.
    • (1987) Computer Speech and Language , vol.2 , pp. 35-61
    • Plaut, D.1    Hinton, G.2
  • 54
    • 0041437046 scopus 로고
    • Task decomposition through competition in a modular connectionist architecture: The what and where vision tasks
    • [54] R. Jacobs, M. Jordan and A. Barto, Task decomposition through competition in a modular connectionist architecture: The what and where vision tasks, Tech. Rep., COINS, 1990.
    • (1990) Tech. Rep., COINS
    • Jacobs, R.1    Jordan, M.2    Barto, A.3
  • 55
    • 84943277268 scopus 로고
    • Backpropagation for linearly separable patterns: A detailed analysis
    • San Francisco, CA IEEE Press, March-April
    • [55] P. Frasconi, M. Gori and A. Tesi, Backpropagation for linearly separable patterns: a detailed analysis, in IEEE Int. Conf. on Neural Networks, vol. 3, San Francisco, CA (IEEE Press, March-April 1993) 1818-1822.
    • (1993) IEEE Int. Conf. on Neural Networks , vol.3 , pp. 1818-1822
    • Frasconi, P.1    Gori, M.2    Tesi, A.3
  • 56
    • 0025449027 scopus 로고
    • Perceptron-based learning algorithms
    • June
    • [56] S. Gallant, Perceptron-based learning algorithms, IEEE Trans. Neural Networks 1 (June 1990) 179-192.
    • (1990) IEEE Trans. Neural Networks , vol.1 , pp. 179-192
    • Gallant, S.1
  • 57
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • [57] T. Poggio and F. Girosi, Networks for approximation and learning, Proc. IEEE 78 (9) (1990) 1481-1497.
    • (1990) Proc. IEEE , vol.78 , Issue.9 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 58
    • 0025489075 scopus 로고
    • The self-organizing map
    • Special Issue on Neural Networks
    • [58] T. Kohonen, The self-organizing map, Proc. IEEE, 78 (9) (1990) 1464-1480. Special Issue on Neural Networks.
    • (1990) Proc. IEEE , vol.78 , Issue.9 , pp. 1464-1480
    • Kohonen, T.1
  • 59
    • 85030276703 scopus 로고    scopus 로고
    • Further results on the local minima free condition on backpropagation learning
    • to appear
    • [59] X. Yu and G. Chen, Further results on the local minima free condition on backpropagation learning, to appear in IEEE Trans. Neural Networks.
    • IEEE Trans. Neural Networks
    • Yu, X.1    Chen, G.2
  • 62
    • 0029267621 scopus 로고
    • Learning in multilayered networks used as autoassociators
    • March
    • [62] M. Bianchini, P. Frasconi and M. Gori, Learning in multilayered networks used as autoassociators, IEEE Trans. Neural Networks 6 (March 1995) 512-515.
    • (1995) IEEE Trans. Neural Networks , vol.6 , pp. 512-515
    • Bianchini, M.1    Frasconi, P.2    Gori, M.3
  • 63
    • 0024220237 scopus 로고
    • Auto-association by multilayer perceptrons and singular value decomposition
    • [63] H. Bourland and Y. Kamp, Auto-association by multilayer perceptrons and singular value decomposition, Biol. Cybernet. 59 (1988) 291-294.
    • (1988) Biol. Cybernet. , vol.59 , pp. 291-294
    • Bourland, H.1    Kamp, Y.2
  • 65
    • 0001609567 scopus 로고
    • An efficient gradient-based algorithm for on-line training of recurrent network trajectories
    • [65] R.J. Williams and J. Peng, An efficient gradient-based algorithm for on-line training of recurrent network trajectories, Neural Computat. 2 (4) (1990) 490-501.
    • (1990) Neural Computat. , vol.2 , Issue.4 , pp. 490-501
    • Williams, R.J.1    Peng, J.2
  • 66
    • 0028399791 scopus 로고
    • On the problem of local minima in recurrent neural networks
    • March Special Issue on Recurrent Neural Networks
    • [66] M. Bianchini, M. Gori and M. Maggini, On the problem of local minima in recurrent neural networks IEEE Trans. Neural Networks, 5 (March 1994) 167-177. Special Issue on Recurrent Neural Networks.
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 167-177
    • Bianchini, M.1    Gori, M.2    Maggini, M.3
  • 68
    • 0026376527 scopus 로고
    • The effect of weights on premature saturation in back-propagation learning
    • Seattle July 8-12
    • [68] Y. Lee, S. Oh and M. Kim, The effect of weights on premature saturation in back-propagation learning, in Int. Joint Conf. on Neural Networks, vol. 1, Seattle (July 8-12, 1991) 765-770.
    • (1991) Int. Joint Conf. on Neural Networks , vol.1 , pp. 765-770
    • Lee, Y.1    Oh, S.2    Kim, M.3
  • 69
    • 85030280171 scopus 로고    scopus 로고
    • Bifurcations of recurrent neural networks in gradient descent learning
    • [69] K. Doya, Bifurcations of recurrent neural networks in gradient descent learning, Connectionist News Neuroprose.
    • Connectionist News Neuroprose
    • Doya, K.1
  • 70
    • 0002932077 scopus 로고
    • Backpropagation can give rise to spurious local minima even for networks without hidden layers
    • [70] E. Sontag and H. Sussman, Backpropagation can give rise to spurious local minima even for networks without hidden layers, Complex Syst. 3 (1989) 91-106.
    • (1989) Complex Syst. , vol.3 , pp. 91-106
    • Sontag, E.1    Sussman, H.2
  • 71
    • 0011838923 scopus 로고
    • Some examples of local minima during learning with backpropagation
    • Vietri sul Mare, Italy May
    • [71] M. Gori and A. Tesi, Some examples of local minima during learning with backpropagation, in Parallel Architectures and Neural Networks, Vietri sul Mare, Italy (May 1990).
    • (1990) Parallel Architectures and Neural Networks
    • Gori, M.1    Tesi, A.2
  • 73
    • 0000669473 scopus 로고
    • Approximation of boolean functions by sigmoidal networks: Part 1: XOR and other two-variable functions
    • [73] E. Blum, Approximation of boolean functions by sigmoidal networks: Part 1: XOR and other two-variable functions, Neural Networks 1 (1989) 532-540.
    • (1989) Neural Networks , vol.1 , pp. 532-540
    • Blum, E.1
  • 75
    • 0028392483 scopus 로고
    • Learning long-term dependencies with gradient descent is difficult
    • March Special Issue on Recurrent Neural Networks
    • [75] Y. Bengio, P. Frasconi and P. Simard, Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Networks (March 1994) 157-166. Special Issue on Recurrent Neural Networks.
    • (1994) IEE E Trans. Neural Networks , pp. 157-166
    • Bengio, Y.1    Frasconi, P.2    Simard, P.3
  • 76
    • 0026897995 scopus 로고
    • Statistically controlled activation weight initialization (SCAWI)
    • [76] C. Drago and S. Ridella, Statistically controlled activation weight initialization (SCAWI), IEEE Trans. Neural Networks 3 (4) (1992) 627-631.
    • (1992) IEEE Trans. Neural Networks , vol.3 , Issue.4 , pp. 627-631
    • Drago, C.1    Ridella, S.2
  • 77
    • 0001033889 scopus 로고
    • Learning complex, extended sequences using the principle of history compression
    • [77] J. Schmidthuber, Learning complex, extended sequences using the principle of history compression, Neural Computat. 4 (1992) 234-242.
    • (1992) Neural Computat. , vol.4 , pp. 234-242
    • Schmidthuber, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.