-
3
-
-
0003129976
-
Floating point standards - Theory and practice
-
Moore, R.E. (ed), Academic Press
-
Cody, W.J. (1988). Floating Point Standards - Theory and practice, In: Moore, R.E. (ed), Reliability in Computing, Academic Press, 99-107.
-
(1988)
Reliability in Computing
, pp. 99-107
-
-
Cody, W.J.1
-
5
-
-
51249193745
-
On the remainder of the Runge-Kutta formula in the theory of ordinary differential equations
-
Bieberbach, L. (1951). On the remainder of the Runge-Kutta formula in the theory of ordinary differential equations, Zeitschr. angew. Math. Phys. (ZAMP), 2, 233-248.
-
(1951)
Zeitschr. Angew. Math. Phys. (ZAMP)
, vol.2
, pp. 233-248
-
-
Bieberbach, L.1
-
6
-
-
0011534940
-
A computer-assisted proof of universality for area-preserving maps
-
Eckmann, J.P, Koch, H., Wittwer, P. (1984). A computer-assisted proof of universality for area-preserving maps, Memoirs of the American Mathematical Society 47, 1-121.
-
(1984)
Memoirs of the American Mathematical Society
, vol.47
, pp. 1-121
-
-
Eckmann, J.P.1
Koch, H.2
Wittwer, P.3
-
7
-
-
0003589989
-
-
Berlin: Springer-Verlag
-
Hairer, E., Nørsett, S.P., Wanner, G. (1987). Solving Ordinary Differential Equations I, Nonstiff Problems, Berlin: Springer-Verlag.
-
(1987)
Solving Ordinary Differential Equations I, Nonstiff Problems
-
-
Hairer, E.1
Nørsett, S.P.2
Wanner, G.3
-
9
-
-
0002220884
-
A computer proof that the Lorenz equations have "chaotic" solutions
-
Hassard, B., Hastings, S., Troy, W., Zhang, J. (1994). A computer proof that the Lorenz equations have "chaotic" solutions, Appl. Math. Letter, 7, 79-83.
-
(1994)
Appl. Math. Letter
, vol.7
, pp. 79-83
-
-
Hassard, B.1
Hastings, S.2
Troy, W.3
Zhang, J.4
-
12
-
-
0011600392
-
Interval arithmetic in mathematica
-
Keiper, J. (1993). Interval arithmetic in Mathematica, Interval Computations, 3, 76-87.
-
(1993)
Interval Computations
, vol.3
, pp. 76-87
-
-
Keiper, J.1
-
13
-
-
0011600738
-
-
Universite de Geneve, preprint
-
Koch, H., Schenkel, A., Wittwer P. (1995). Computer assisted proofs in analysis and programming in logic: a case study, Universite de Geneve, preprint.
-
(1995)
Computer Assisted Proofs in Analysis and Programming in Logic: A Case Study
-
-
Koch, H.1
Schenkel, A.2
Wittwer, P.3
-
14
-
-
84966250718
-
Computer assisted proof of the Feigenbaum conjectures
-
Lanford, O.E. (1982). Computer assisted proof of the Feigenbaum Conjectures, Bull. AMS(New Series), 6, 427-434.
-
(1982)
Bull. AMS(New Series)
, vol.6
, pp. 427-434
-
-
Lanford, O.E.1
-
15
-
-
0002403778
-
Chaos in Lorenz equations: A computer assisted proof
-
Mischaikow, K., Mrozek, M. (1995a). Chaos in Lorenz equations: a computer assisted proof, Bull. AMS, 32, 66-72.
-
(1995)
Bull. AMS
, vol.32
, pp. 66-72
-
-
Mischaikow, K.1
Mrozek, M.2
-
18
-
-
0004293209
-
-
Englewood Cliffs, NJ: Prentice-Hall
-
Moore, R.E. (1966). Interval Analysis, Englewood Cliffs, NJ: Prentice-Hall.
-
(1966)
Interval Analysis
-
-
Moore, R.E.1
-
19
-
-
0011668908
-
Topological invariants, multivalued maps and computer assisted proofs
-
Mrozek, M. (1996). Topological invariants, multivalued maps and computer assisted proofs, Computers & Mathematics, 32 82-104.
-
(1996)
Computers & Mathematics
, vol.32
, pp. 82-104
-
-
Mrozek, M.1
-
20
-
-
0000561907
-
Rigorous verification of chaos in a molecular model
-
Rage, T., Neumaier, A., Schlier, C. (1994). Rigorous verification of chaos in a molecular model, Physical Rev. E, 50 2682-2688.
-
(1994)
Physical Rev. E
, vol.50
, pp. 2682-2688
-
-
Rage, T.1
Neumaier, A.2
Schlier, C.3
-
21
-
-
0002772206
-
Algorithms for verified inclusions - Theory and practice
-
Moore, R.E. (ed), Academic Press
-
Rump, S.M. (1988). Algorithms for verified inclusions - Theory and practice, In: Moore, R.E. (ed), Reliability in Computing, Academic Press, 109-126.
-
(1988)
Reliability in Computing
, pp. 109-126
-
-
Rump, S.M.1
|