메뉴 건너뛰기




Volumn 22, Issue 4, 1996, Pages 435-458

Rigorous error analysis of numerical algorithms via symbolic computations

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0030268948     PISSN: 07477171     EISSN: None     Source Type: Journal    
DOI: 10.1006/jsco.1996.0061     Document Type: Article
Times cited : (8)

References (22)
  • 3
    • 0003129976 scopus 로고
    • Floating point standards - Theory and practice
    • Moore, R.E. (ed), Academic Press
    • Cody, W.J. (1988). Floating Point Standards - Theory and practice, In: Moore, R.E. (ed), Reliability in Computing, Academic Press, 99-107.
    • (1988) Reliability in Computing , pp. 99-107
    • Cody, W.J.1
  • 5
    • 51249193745 scopus 로고
    • On the remainder of the Runge-Kutta formula in the theory of ordinary differential equations
    • Bieberbach, L. (1951). On the remainder of the Runge-Kutta formula in the theory of ordinary differential equations, Zeitschr. angew. Math. Phys. (ZAMP), 2, 233-248.
    • (1951) Zeitschr. Angew. Math. Phys. (ZAMP) , vol.2 , pp. 233-248
    • Bieberbach, L.1
  • 9
    • 0002220884 scopus 로고
    • A computer proof that the Lorenz equations have "chaotic" solutions
    • Hassard, B., Hastings, S., Troy, W., Zhang, J. (1994). A computer proof that the Lorenz equations have "chaotic" solutions, Appl. Math. Letter, 7, 79-83.
    • (1994) Appl. Math. Letter , vol.7 , pp. 79-83
    • Hassard, B.1    Hastings, S.2    Troy, W.3    Zhang, J.4
  • 12
    • 0011600392 scopus 로고
    • Interval arithmetic in mathematica
    • Keiper, J. (1993). Interval arithmetic in Mathematica, Interval Computations, 3, 76-87.
    • (1993) Interval Computations , vol.3 , pp. 76-87
    • Keiper, J.1
  • 14
    • 84966250718 scopus 로고
    • Computer assisted proof of the Feigenbaum conjectures
    • Lanford, O.E. (1982). Computer assisted proof of the Feigenbaum Conjectures, Bull. AMS(New Series), 6, 427-434.
    • (1982) Bull. AMS(New Series) , vol.6 , pp. 427-434
    • Lanford, O.E.1
  • 15
    • 0002403778 scopus 로고
    • Chaos in Lorenz equations: A computer assisted proof
    • Mischaikow, K., Mrozek, M. (1995a). Chaos in Lorenz equations: a computer assisted proof, Bull. AMS, 32, 66-72.
    • (1995) Bull. AMS , vol.32 , pp. 66-72
    • Mischaikow, K.1    Mrozek, M.2
  • 18
    • 0004293209 scopus 로고
    • Englewood Cliffs, NJ: Prentice-Hall
    • Moore, R.E. (1966). Interval Analysis, Englewood Cliffs, NJ: Prentice-Hall.
    • (1966) Interval Analysis
    • Moore, R.E.1
  • 19
    • 0011668908 scopus 로고    scopus 로고
    • Topological invariants, multivalued maps and computer assisted proofs
    • Mrozek, M. (1996). Topological invariants, multivalued maps and computer assisted proofs, Computers & Mathematics, 32 82-104.
    • (1996) Computers & Mathematics , vol.32 , pp. 82-104
    • Mrozek, M.1
  • 20
    • 0000561907 scopus 로고
    • Rigorous verification of chaos in a molecular model
    • Rage, T., Neumaier, A., Schlier, C. (1994). Rigorous verification of chaos in a molecular model, Physical Rev. E, 50 2682-2688.
    • (1994) Physical Rev. E , vol.50 , pp. 2682-2688
    • Rage, T.1    Neumaier, A.2    Schlier, C.3
  • 21
    • 0002772206 scopus 로고
    • Algorithms for verified inclusions - Theory and practice
    • Moore, R.E. (ed), Academic Press
    • Rump, S.M. (1988). Algorithms for verified inclusions - Theory and practice, In: Moore, R.E. (ed), Reliability in Computing, Academic Press, 109-126.
    • (1988) Reliability in Computing , pp. 109-126
    • Rump, S.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.