메뉴 건너뛰기




Volumn 17, Issue 12, 1996, Pages 1223-1232

A robust algorithm for automatic extraction of an unknown number of clusters from noisy data

Author keywords

Cluster compatibility measure; Fuzzy clustering; M estimator; Robust clustering; Unsupervised clustering

Indexed keywords

ALGORITHMS; FUZZY SETS; PARAMETER ESTIMATION; ROBUSTNESS (CONTROL SYSTEMS);

EID: 0030260017     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/0167-8655(96)00080-3     Document Type: Article
Times cited : (106)

References (14)
  • 2
    • 0019438013 scopus 로고
    • A clustering performance measure based on fuzzy set decomposition
    • Backer, E. and A.K. Jain (1981). A clustering performance measure based on fuzzy set decomposition. IEEE Trans. Pattern Anal. Machine Intell. 3(1), 66-74.
    • (1981) IEEE Trans. Pattern Anal. Machine Intell. , vol.3 , Issue.1 , pp. 66-74
    • Backer, E.1    Jain, A.K.2
  • 4
    • 0000586827 scopus 로고
    • Characterization and detection of noise in clustering
    • Dave, R.N. (1991). Characterization and detection of noise in clustering. Pattern Recognition Letters 12 (11), 657-664.
    • (1991) Pattern Recognition Letters , vol.12 , Issue.11 , pp. 657-664
    • Dave, R.N.1
  • 5
    • 0018057468 scopus 로고
    • Fuzzy clustering with a fuzzy covariance matrix
    • Gustafson, E.E. and W.C. Kessel (1979). Fuzzy clustering with a fuzzy covariance matrix. In: IEEE CDC, 761-766.
    • (1979) IEEE CDC , pp. 761-766
    • Gustafson, E.E.1    Kessel, W.C.2
  • 8
    • 51749124296 scopus 로고
    • Fuzzy and possibilistic clustering methods for computer vision
    • S. Mitra, M. Gupta and W. Kraske, Eds., SPIE Institute Series
    • Krishnapuram, R. and J. Keller (1994a). Fuzzy and possibilistic clustering methods for computer vision. In: S. Mitra, M. Gupta and W. Kraske, Eds., Neural and Fuzzy Systems, SPIE Institute Series, 133-159.
    • (1994) Neural and Fuzzy Systems , pp. 133-159
    • Krishnapuram, R.1    Keller, J.2
  • 9
    • 0027595430 scopus 로고
    • A possibilistic approach to clustering
    • Krishnapuram, R. and J. Keller (1994b). A possibilistic approach to clustering. IEEE Trans. Fuzzy Systems 1 (2), 98-110.
    • (1994) IEEE Trans. Fuzzy Systems , vol.1 , Issue.2 , pp. 98-110
    • Krishnapuram, R.1    Keller, J.2
  • 14
    • 0026626412 scopus 로고
    • A highly robust estimator through partially likelihood function modeling and its application in computer vision
    • Zhuang, X., T. Wang and P. Zhang (1992). A highly robust estimator through partially likelihood function modeling and its application in computer vision. IEEE Trans. Pattern Anal. Machine Intell. 14 (1), 19-34.
    • (1992) IEEE Trans. Pattern Anal. Machine Intell. , vol.14 , Issue.1 , pp. 19-34
    • Zhuang, X.1    Wang, T.2    Zhang, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.