-
1
-
-
85007692148
-
Derivation of element of stiffness matrices by assumed stress distributions
-
T. H. H. Pian,'Derivation of element of stiffness matrices by assumed stress distributions', AIAA J., 2, 1333-1336 (1964).
-
(1964)
AIAA J.
, vol.2
, pp. 1333-1336
-
-
Pian, T.H.H.1
-
2
-
-
0020207718
-
Alternative ways for formulation of hybrid stress elements
-
T. H. H. Pian and D. P. Chen,'Alternative ways for formulation of hybrid stress elements', Int. J. numer. methods eng. 18, 1679-1684 (1982).
-
(1982)
Int. J. Numer. Methods Eng.
, vol.18
, pp. 1679-1684
-
-
Pian, T.H.H.1
Chen, D.P.2
-
3
-
-
0021497441
-
Rational approach for assumed stress finite elements
-
T. H. H. Pian and K. Sumihara,'Rational approach for assumed stress finite elements', Int. J. numer. methods eng. 20, 1685-1695 (1984).
-
(1984)
Int. J. Numer. Methods Eng.
, vol.20
, pp. 1685-1695
-
-
Pian, T.H.H.1
Sumihara, K.2
-
4
-
-
0024099477
-
A rational approach for choosing stress terms for hybrid finite element formulation
-
T. H. H. Pian and C. C. Wu, 'A rational approach for choosing stress terms for hybrid finite element formulation', Int. J. numer. methods eng., 26, 2331-2343 (1988).
-
(1988)
Int. J. Numer. Methods Eng.
, vol.26
, pp. 2331-2343
-
-
Pian, T.H.H.1
Wu, C.C.2
-
5
-
-
0027589789
-
New strategy for assumed stress for 4-node hybrid stress membrane element
-
Kuan-Ya Yuan, Yeong-Shyang Haung and T. H. H. Pian, 'New strategy for assumed stress for 4-node hybrid stress membrane element', Int. J. numer. methods eng. 36, 1747-1763 (1993).
-
(1993)
Int. J. Numer. Methods Eng.
, vol.36
, pp. 1747-1763
-
-
Yuan, K.-Y.1
Haung, Y.-S.2
Pian, T.H.H.3
-
6
-
-
0028378686
-
A unified theory for formulation of hybrid stress membrane elements
-
Kuan-Ya Yuan, Jyti-Chung Wen and T. H. H. Pian, 'A unified theory for formulation of hybrid stress membrane elements', Int. J. numer. methods eng., 37, 457-474 (1994).
-
(1994)
Int. J. Numer. Methods Eng.
, vol.37
, pp. 457-474
-
-
Yuan, K.-Y.1
Wen, J.-C.2
Pian, T.H.H.3
-
7
-
-
0023287512
-
Limitation principles for mixed finite elements based on the Hu-Washizu variational formulation
-
H. Stolarski and T. Belytschko,'Limitation principles for mixed finite elements based on the Hu-Washizu variational formulation', Comp. Methods Appl. Mech. Eng. 60, 195-216 (1987).
-
(1987)
Comp. Methods Appl. Mech. Eng.
, vol.60
, pp. 195-216
-
-
Stolarski, H.1
Belytschko, T.2
-
9
-
-
0020920735
-
On the suppression of zero energy deformation modes
-
T. H. H. Pian and D. Chen,'On the suppression of zero energy deformation modes', Int. J. numer. methods eng., 19, 1741-1752 (1983).
-
(1983)
Int. J. Numer. Methods Eng.
, vol.19
, pp. 1741-1752
-
-
Pian, T.H.H.1
Chen, D.2
-
10
-
-
84985370795
-
A non-conforming element method
-
R. R. Taylor, P. J. Beresford and E. L. Wilson,'A non-conforming element method', Int. J. numer. methods eng., 24, eng., 10, 1211-1219 (1976).
-
(1976)
Int. J. Numer. Methods
, vol.24
, Issue.10
, pp. 1211-1219
-
-
Taylor, R.R.1
Beresford, P.J.2
Wilson, E.L.3
-
11
-
-
0023422229
-
A new approach for the hybrid element method
-
Wanji Chen and Y. K. Chung, 'A new approach for the hybrid element method', Int. J. numer. methods eng., 24, 1697-1709 (1987).
-
(1987)
Int. J. Numer. Methods
, vol.24
, pp. 1697-1709
-
-
Chen, W.1
Chung, Y.K.2
|