-
2
-
-
0022524005
-
Influence of noise on duffing-van der pol oscillators
-
W. Ebeling, H. Herzel, W. Richert and L. Schimansky-Geier, Influence of noise on Duffing-van der Pol oscillators. ZAMM 66(3), 141 (1986).
-
(1986)
ZAMM
, vol.66
, Issue.3
, pp. 141
-
-
Ebeling, W.1
Herzel, H.2
Richert, W.3
Schimansky-Geier, L.4
-
3
-
-
0026118691
-
Co-dimension two bifurcations in the presence of noise
-
N. Sri Namachchivaya, Co-dimension two bifurcations in the presence of noise. J. Appl. Mech. 58, 259 (1991).
-
(1991)
J. Appl. Mech.
, vol.58
, pp. 259
-
-
Namachchivaya, N.S.1
-
6
-
-
0004162673
-
Stochastic bifurcation: Instructive examples in dimension one
-
(edited by M. Pinsky and V. Wihstutz), Birkhäuser, Boston
-
L. Arnold and P. Boxler, Stochastic bifurcation: instructive examples in dimension one. In Diffusion Processes and Related Problems in Analysis. Vol II: Stochastic Flows. Progress in Probability (edited by M. Pinsky and V. Wihstutz), Vol. 27, pp. 241-256. Birkhäuser, Boston (1992).
-
(1992)
Diffusion Processes and Related Problems in Analysis. Vol II: Stochastic Flows. Progress in Probability
, vol.27
, pp. 241-256
-
-
Arnold, L.1
Boxler, P.2
-
7
-
-
0011680282
-
Invariant measures for random dynamical systems, and a necessary condition for stochastic bifurcation from a fixed point
-
L. Arnold and Xu Kedai, Invariant measures for random dynamical systems, and a necessary condition for stochastic bifurcation from a fixed point. Rand. Comput. Dyn. 2, 165 (1994).
-
(1994)
Rand. Comput. Dyn.
, vol.2
, pp. 165
-
-
Arnold, L.1
Kedai, X.2
-
8
-
-
21844497123
-
A stochastic hopf bifurcation
-
P. H. Baxendale, A stochastic Hopf bifurcation. Prob. Th. Rel. Fields 99, 581 (1994).
-
(1994)
Prob. Th. Rel. Fields
, vol.99
, pp. 581
-
-
Baxendale, P.H.1
-
9
-
-
0030290070
-
Bifurcation scenarios of the noisy Duffing-van der pol oscillator
-
to appear
-
K. R. Schenk-Hoppé, Bifurcation scenarios of the noisy Duffing-van der Pol oscillator. Nonlinear Dynamics (to appear) (1996).
-
(1996)
Nonlinear Dynamics
-
-
Schenk-Hoppé, K.R.1
-
12
-
-
0000124397
-
Expansion of the global error for numerical schemes solving SDE
-
D. Talay and L. Tubaro, Expansion of the global error for numerical schemes solving SDE. Stoch. Anal. Applic. 8(4), 483 (1990).
-
(1990)
Stoch. Anal. Applic.
, vol.8
, Issue.4
, pp. 483
-
-
Talay, D.1
Tubaro, L.2
-
13
-
-
0002155244
-
Random dynamical systems
-
(edited by L. Arnold, H. Crauel and J.-P. Eckmann), Springer, Berlin
-
L. Arnold and H. Crauel, Random dynamical systems. In Lyapunov Exponents, Oberwolfach 1990, Vol. 1486 of Lecture Notes in Mathematics (edited by L. Arnold, H. Crauel and J.-P. Eckmann), pp. 1-22. Springer, Berlin (1991).
-
Lyapunov Exponents, Oberwolfach 1990, Vol. 1486 of Lecture Notes in Mathematics
, vol.1486
, Issue.1991
, pp. 1-22
-
-
Arnold, L.1
Crauel, H.2
-
14
-
-
21844488246
-
Perfect cocycles through stochastic differential equations
-
L. Arnold and M. Scheutzow, Perfect cocycles through stochastic differential equations. Probab. Th. Rel. Fields 101, 65 (1995).
-
(1995)
Probab. Th. Rel. Fields
, vol.101
, pp. 65
-
-
Arnold, L.1
Scheutzow, M.2
-
15
-
-
0030487210
-
Deterministic and stochastic duffing-van der pol oscillators are non-explosive
-
to appear
-
K. R. Schenk-Hoppé, Deterministic and stochastic Duffing-van der Pol oscillators are non-explosive. ZAMP J. Appl. Math. Physics (to appear) (1996).
-
(1996)
ZAMP J. Appl. Math. Physics
-
-
Schenk-Hoppé, K.R.1
-
16
-
-
0001516826
-
Extremal exponents of random dynamical systems do not vanish
-
H. Crauel, Extremal exponents of random dynamical systems do not vanish. Dynamics Differ. Equations 2, 245 (1990).
-
(1990)
Dynamics Differ. Equations
, vol.2
, pp. 245
-
-
Crauel, H.1
-
17
-
-
21844482698
-
Attractors for random dynamical systems
-
H. Crauel and F. Flandoli, Attractors for random dynamical systems. Probab. Th. Rel. Fields 100, 365 (1994).
-
(1994)
Probab. Th. Rel. Fields
, vol.100
, pp. 365
-
-
Crauel, H.1
Flandoli, F.2
-
18
-
-
0022737468
-
Asymptotic analysis of the Lyapunov exponent and rotation number of the random oscillator and applications
-
L. Arnold, G. Papanicolaou and V. Wihstutz, Asymptotic analysis of the Lyapunov exponent and rotation number of the random oscillator and applications. SIAM J. Appl. Math. 46, 427 (1986).
-
(1986)
SIAM J. Appl. Math.
, vol.46
, pp. 427
-
-
Arnold, L.1
Papanicolaou, G.2
Wihstutz, V.3
-
19
-
-
0024135650
-
Hopf bifurcation in the presence of both parametric and external stochastic excitations
-
N. Sri Namachchivaya, Hopf bifurcation in the presence of both parametric and external stochastic excitations. J. Appl. Mech. 110, 923 (1988).
-
(1988)
J. Appl. Mech.
, vol.110
, pp. 923
-
-
Sri Namachchivaya, N.1
-
20
-
-
85029985446
-
-
Report No. 345, Institut für Dynamische Systeme, Universität Bremen July
-
L. Arnold, A. Eizenberg and V. Wihstutz, Large noise asymptotics of invariant measures, with applications to Lyapunov exponents. Report No. 345, Institut für Dynamische Systeme, Universität Bremen (July 1995).
-
(1995)
Large Noise Asymptotics of Invariant Measures, with Applications to Lyapunov Exponents
-
-
Arnold, L.1
Eizenberg, A.2
Wihstutz, V.3
-
21
-
-
0000515929
-
Lyapunov exponent of linear stochastic systems with large diffusion term
-
E. Pardoux and V. Wihstutz, Lyapunov exponent of linear stochastic systems with large diffusion term. Stoch. Process. Appl. 40, 289 (1992).
-
(1992)
Stoch. Process. Appl.
, vol.40
, pp. 289
-
-
Pardoux, E.1
Wihstutz, V.2
|