메뉴 건너뛰기




Volumn 23, Issue 4, 1996, Pages 367-377

High-order-accurate discretization stencil for an elliptic equation

Author keywords

Discretization; Duct flow; High order accuracy

Indexed keywords

ALGEBRA; BOUNDARY CONDITIONS; COMPUTATIONAL FLUID DYNAMICS; DIFFERENTIAL EQUATIONS; DUCTS; ELASTICITY; LAMINAR FLOW; LAPLACE TRANSFORMS; MATHEMATICAL OPERATORS; NONLINEAR EQUATIONS; SET THEORY; TORSIONAL STRESS;

EID: 0030212782     PISSN: 02712091     EISSN: None     Source Type: Journal    
DOI: 10.1002/(SICI)1097-0363(19960830)23:4<367::AID-FLD426>3.0.CO;2-G     Document Type: Article
Times cited : (10)

References (6)
  • 2
    • 84987045073 scopus 로고
    • Improved finite difference method for equilibrium problems based on differentiation of the partial differential equations and the boundary conditions
    • M. Arad, R. Segev and G. Ben-Dor, 'Improved finite difference method for equilibrium problems based on differentiation of the partial differential equations and the boundary conditions', Int. j. numer methods eng., 38, 1831-1853 (1995).
    • (1995) Int. J. Numer Methods Eng. , vol.38 , pp. 1831-1853
    • Arad, M.1    Segev, R.2    Ben-Dor, G.3
  • 6
    • 84938929392 scopus 로고
    • Steady motion of conducting fluids in pipes under transverse magnetic fields
    • J. A. Shercliff, 'Steady motion of conducting fluids in pipes under transverse magnetic fields', Proc. Camb. Philos. Soc., 49, 136-144 (1953).
    • (1953) Proc. Camb. Philos. Soc. , vol.49 , pp. 136-144
    • Shercliff, J.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.