메뉴 건너뛰기




Volumn 318, Issue , 1996, Pages 49-76

Nonlinear shallow-water oscillations in a parabolic channel: Exact solutions and trajectory analyses

Author keywords

[No Author keywords available]

Indexed keywords

MATHEMATICAL MODELS; NONLINEAR EQUATIONS; OSCILLATIONS;

EID: 0030199269     PISSN: 00221120     EISSN: None     Source Type: Journal    
DOI: 10.1017/S0022112096007021     Document Type: Article
Times cited : (20)

References (20)
  • 2
    • 0001528640 scopus 로고
    • Some general theorems concerning the finite motion of a shallow liquid lying on a paraboloid
    • BALL, F. K. 1963 Some general theorems concerning the finite motion of a shallow liquid lying on a paraboloid. J. Fluid Mech. 17, 240-256.
    • (1963) J. Fluid Mech. , vol.17 , pp. 240-256
    • Ball, F.K.1
  • 3
    • 0043212771 scopus 로고
    • An exact theory of simple finite shallow water oscillations on a rotating earth
    • ed. R. Silvester. Macmillan
    • BALL, F. K. 1964 An exact theory of simple finite shallow water oscillations on a rotating earth. In Hydraulics and Fluid Mechanics (ed. R. Silvester). Macmillan.
    • (1964) Hydraulics and Fluid Mechanics
    • Ball, F.K.1
  • 4
    • 0043212769 scopus 로고
    • The effect of rotation on the simpler modes of motion of a liquid in an elliptic paraboloid
    • BALL, F. K. 1965 The effect of rotation on the simpler modes of motion of a liquid in an elliptic paraboloid. J. Fluid Mech. 22, 529-545.
    • (1965) J. Fluid Mech. , vol.22 , pp. 529-545
    • Ball, F.K.1
  • 5
    • 5244226362 scopus 로고
    • Computing elliptic integrals by duplication
    • CARLSON, B. C. 1979 Computing elliptic integrals by duplication. Numer. Math. 33, 1-16.
    • (1979) Numer. Math. , vol.33 , pp. 1-16
    • Carlson, B.C.1
  • 6
    • 84958444933 scopus 로고
    • Water waves of finite amplitude on a sloping beach
    • CARRIER, G. F. & GREENSPAN, H. P. 1958 Water waves of finite amplitude on a sloping beach. J. Fluid Mech. 4, 97-109.
    • (1958) J. Fluid Mech. , vol.4 , pp. 97-109
    • Carrier, G.F.1    Greenspan, H.P.2
  • 7
    • 0007784207 scopus 로고
    • An exact analytical solution for a time-dependent, elliptical warm-core ring with outcropping interface
    • CUSHMAN-ROISIN, B. 1984 An exact analytical solution for a time-dependent, elliptical warm-core ring with outcropping interface. Ocean Modelling 59, 5-6.
    • (1984) Ocean Modelling , vol.59 , pp. 5-6
    • Cushman-Roisin, B.1
  • 8
    • 84981620209 scopus 로고
    • Exact analytical solutions for elliptical vortices of the shallow-water equations
    • CUSHMAN-ROISIN, B. 1987 Exact analytical solutions for elliptical vortices of the shallow-water equations. Tellus 39A, 235-244.
    • (1987) Tellus , vol.39 A , pp. 235-244
    • Cushman-Roisin, B.1
  • 9
    • 0000972566 scopus 로고
    • Oscillations and rotations of elliptical warm-core rings
    • CUSHMAN-ROISIN, B., HEIL, W. H. & NOF, D. 1985 Oscillations and rotations of elliptical warm-core rings. J. Geophys. Res. 90, 11756-11764.
    • (1985) J. Geophys. Res. , vol.90 , pp. 11756-11764
    • Cushman-Roisin, B.1    Heil, W.H.2    Nof, D.3
  • 11
    • 0042210509 scopus 로고
    • The tidal oscillations in an elliptic basin of variable depth
    • GOLDSBROUGH, G. R. 1931 The tidal oscillations in an elliptic basin of variable depth. Proc. R. Soc. Lond. A 130, 157-167.
    • (1931) Proc. R. Soc. Lond. A , vol.130 , pp. 157-167
    • Goldsbrough, G.R.1
  • 14
    • 0041500188 scopus 로고
    • On free-surface oscillations in a rotating paraboloid
    • MILES, J. W. & BALL, F. K. 1963 On free-surface oscillations in a rotating paraboloid. J. Fluid Mech. 17, 257-266.
    • (1963) J. Fluid Mech. , vol.17 , pp. 257-266
    • Miles, J.W.1    Ball, F.K.2
  • 18
    • 0019382973 scopus 로고
    • Some exact solutions to the nonlinear shallow-water wave equations
    • THACKER, W. C. 1981 Some exact solutions to the nonlinear shallow-water wave equations. J. Fluid Mech. 107, 499-508.
    • (1981) J. Fluid Mech. , vol.107 , pp. 499-508
    • Thacker, W.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.