-
1
-
-
0025750548
-
-
Pschorn, U.; Rössler, E.; Sillescu, H.; Kaufmann, S.; Shaefer, D.; Spiess, H. W. Macromolecules 1991, 24, 398.
-
(1991)
Macromolecules
, vol.24
, pp. 398
-
-
Pschorn, U.1
Rössler, E.2
Sillescu, H.3
Kaufmann, S.4
Shaefer, D.5
Spiess, H.W.6
-
2
-
-
0025464741
-
-
Schaefer, D.; Spiess, H. W.; Suter, U. W.; Fleming, W. W. Macromolecules 1990, 23, 3431.
-
(1990)
Macromolecules
, vol.23
, pp. 3431
-
-
Schaefer, D.1
Spiess, H.W.2
Suter, U.W.3
Fleming, W.W.4
-
5
-
-
0017494818
-
-
Jones, A.; Stockmayer, W. J. Polym. Sci., Polym. Phys. Ed. 1977, 15, 847.
-
(1977)
J. Polym. Sci., Polym. Phys. Ed.
, vol.15
, pp. 847
-
-
Jones, A.1
Stockmayer, W.2
-
10
-
-
0011438218
-
-
Valeur, B.; Jarry, J.; Geny, F.; Monnerie, L. J. Polym. Sci., Polym. Phys. Ed. 1975, 13, 667.
-
(1975)
J. Polym. Sci., Polym. Phys. Ed.
, vol.13
, pp. 667
-
-
Valeur, B.1
Jarry, J.2
Geny, F.3
Monnerie, L.4
-
13
-
-
0001660672
-
-
Hall, C. K.; Helfand, E. J. Chem. Phys. 1982, 77, 3275. Cook, R.; Helfand, E. J. Chem. Phys. 1985, 82, 1599. Skolnick, J.; Helfand, E. J. Chem. Phys. 1980, 72, 5489.
-
(1982)
J. Chem. Phys.
, vol.77
, pp. 3275
-
-
Hall, C.K.1
Helfand, E.2
-
14
-
-
4243138143
-
-
Hall, C. K.; Helfand, E. J. Chem. Phys. 1982, 77, 3275. Cook, R.; Helfand, E. J. Chem. Phys. 1985, 82, 1599. Skolnick, J.; Helfand, E. J. Chem. Phys. 1980, 72, 5489.
-
(1985)
J. Chem. Phys.
, vol.82
, pp. 1599
-
-
Cook, R.1
Helfand, E.2
-
15
-
-
36749109508
-
-
Hall, C. K.; Helfand, E. J. Chem. Phys. 1982, 77, 3275. Cook, R.; Helfand, E. J. Chem. Phys. 1985, 82, 1599. Skolnick, J.; Helfand, E. J. Chem. Phys. 1980, 72, 5489.
-
(1980)
J. Chem. Phys.
, vol.72
, pp. 5489
-
-
Skolnick, J.1
Helfand, E.2
-
19
-
-
0018442619
-
-
Gronski, W.; Schafer, T.; Peter, R. Polym. Bull. 1979, 1, 319.
-
(1979)
Polym. Bull.
, vol.1
, pp. 319
-
-
Gronski, W.1
Schafer, T.2
Peter, R.3
-
20
-
-
0027560287
-
-
Radiotis, T.; Brown, G. R.; Dias, P. Macromolecules 1993, 26, 1445.
-
(1993)
Macromolecules
, vol.26
, pp. 1445
-
-
Radiotis, T.1
Brown, G.R.2
Dias, P.3
-
21
-
-
0028516285
-
-
Zhu, W.; Gisser, D.; Ediger, M. D. J. Polym. Sci., Part B: Polym. Phys. 1994, 32, 2251.
-
(1994)
J. Polym. Sci., Part B: Polym. Phys.
, vol.32
, pp. 2251
-
-
Zhu, W.1
Gisser, D.2
Ediger, M.D.3
-
22
-
-
0024302356
-
-
Dejean de la Batie, R.; Lauprêtre, F.; Monnerie, L. Macromolecules 1989, 22, 122.
-
(1989)
Macromolecules
, vol.22
, pp. 122
-
-
Dejean De La Batie, R.1
Lauprêtre, F.2
Monnerie, L.3
-
24
-
-
84979431999
-
-
Bandis, A.; Inglefield, P. T.; Jones, A. A.; Wen, W.-Y. J. Polym. Sci., Polym. Phys. Ed. 1995, 33, 1515.
-
(1995)
J. Polym. Sci., Polym. Phys. Ed.
, vol.33
, pp. 1515
-
-
Bandis, A.1
Inglefield, P.T.2
Jones, A.A.3
Wen, W.-Y.4
-
25
-
-
0026392691
-
-
Zemke, K.; Chmelka, B. F.; Schmidt-Rohr, K.; Spiess, H. W. Macromolecules 1991, 24, 6874. Schaefer, D.; Spiess H. W. J. Chem. Phys. 1992, 97, 7944.
-
(1991)
Macromolecules
, vol.24
, pp. 6874
-
-
Zemke, K.1
Chmelka, B.F.2
Schmidt-Rohr, K.3
Spiess, H.W.4
-
26
-
-
0001250762
-
-
Zemke, K.; Chmelka, B. F.; Schmidt-Rohr, K.; Spiess, H. W. Macromolecules 1991, 24, 6874. Schaefer, D.; Spiess H. W. J. Chem. Phys. 1992, 97, 7944.
-
(1992)
J. Chem. Phys.
, vol.97
, pp. 7944
-
-
Schaefer, D.1
Spiess, H.W.2
-
28
-
-
0028498807
-
-
Smith, G. D.; Yoon, D. Y.; Zhu, W.; Ediger, M. D. Macromol. ecules 1994, 27, 5563.
-
(1994)
Macromol. Ecules
, vol.27
, pp. 5563
-
-
Smith, G.D.1
Yoon, D.Y.2
Zhu, W.3
Ediger, M.D.4
-
32
-
-
0000051486
-
-
(a) Maple, J. R.; Dinur, U.; Hagler, A. T. Proc. Natl. Acad. Sci. U.S.A. 1988, 85, 5350.
-
(1988)
Proc. Natl. Acad. Sci. U.S.A.
, vol.85
, pp. 5350
-
-
Maple, J.R.1
Dinur, U.2
Hagler, A.T.3
-
33
-
-
0002692190
-
-
(b) Maple, J. R.; Thacher, T. S.; Dinur, U.; Hagler, A. T. Chem. Des. Automat. News 1990, 5 (9), 5.
-
(1990)
Chem. Des. Automat. News
, vol.5
, Issue.9
, pp. 5
-
-
Maple, J.R.1
Thacher, T.S.2
Dinur, U.3
Hagler, A.T.4
-
34
-
-
85033855175
-
-
Biosym Technologies Inc., San Diego, CA
-
Biosym Technologies Inc., San Diego, CA.
-
-
-
-
35
-
-
85033852006
-
-
note
-
Another important feature of C-H vector correlation functions in the three environments is that they have qualitatively different shapes (see Figure 3). The long-time portion of the decay is nearly single exponential in solution and quite nonexponential in the melt. In this paper, we have not considered the relationship between the mechanism of local polymer dynamics and the C-H vector correlation function shapes.
-
-
-
-
37
-
-
0000410239
-
-
90 melts also show quite anisotropic dynamics, although not to the same degree as found by Takeuchi and Roe. Simulations of cis- and trans-polybutadiene melts by Kim and Mattice (Kim, E.-G,; Mattice, W. L. J. Chem. Phys. 1994, 101, 6242) show that the backbone geometry can play a large role: The cis chains were found to have relatively little relaxation anisotropy, similar to our cis-polyisoprene, while the local dynamics of the trans- chains were much more anisotropic.
-
(1995)
Macromolecules
, vol.28
, pp. 5897
-
-
Smith, G.D.1
Yoon, D.Y.2
Jaffe, R.L.3
-
38
-
-
18844406442
-
-
90 melts also show quite anisotropic dynamics, although not to the same degree as found by Takeuchi and Roe. Simulations of cis- and trans-polybutadiene melts by Kim and Mattice (Kim, E.-G,; Mattice, W. L. J. Chem. Phys. 1994, 101, 6242) show that the backbone geometry can play a large role: The cis chains were found to have relatively little relaxation anisotropy, similar to our cis-polyisoprene, while the local dynamics of the trans- chains were much more anisotropic.
-
(1994)
J. Chem. Phys.
, vol.101
, pp. 6242
-
-
Kim, E.-G.1
Mattice, W.L.2
-
39
-
-
85033864495
-
-
note
-
trans. The average transition time is calculated using the same equation except that all types of torsions are considered.
-
-
-
-
40
-
-
85033866759
-
-
note
-
This was done by subtracting the infinite time values and normalizing the resulting functions (not shown).
-
-
-
-
41
-
-
85033846643
-
-
note
-
For the purpose of this calculation, a repeat unit was defined to be the region between double bonds.
-
-
-
-
42
-
-
85033868218
-
-
note
-
There were about 10 times more barrier crossings than conformational transitions in the melt and solution, and about 5 times more in vacuum.
-
-
-
|