메뉴 건너뛰기




Volumn 7, Issue 4, 1996, Pages 926-940

Learning algorithms for feedforward networks based on finite samples

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATION THEORY; BACKPROPAGATION; CONVERGENCE OF NUMERICAL METHODS; FUNCTIONS; LEARNING ALGORITHMS; MATHEMATICAL TECHNIQUES; RANDOM PROCESSES; REGRESSION ANALYSIS;

EID: 0030190723     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/72.508936     Document Type: Article
Times cited : (18)

References (59)
  • 1
    • 0006054830 scopus 로고
    • M. A. Aizerman E. M. Braverman L. I. Rozonoer The Robbins̵Monro process and the method of potential functions Automat. Remote Contr. 26 1882 1885 1965
    • (1965) , vol.26 , pp. 1882-1885
    • Aizerman, M.A.1    Braverman, E.M.2    Rozonoer, L.I.3
  • 2
    • 0001329504 scopus 로고
    • M. A. Aizerman E. M. Braverman L. I. Rozonoer Extrapolative problems in automatic control and method of potential functions Amer. Math. Soc. Translations 87 281 303 1970
    • (1970) , vol.87 , pp. 281-303
    • Aizerman, M.A.1    Braverman, E.M.2    Rozonoer, L.I.3
  • 3
    • 85176681646 scopus 로고
    • A. R. Barron Universal approximation bounds for superpositions of a sigmoidal function IEEE Trans. Inform. Theory 39 931 945 1993 18 6498 256500
    • (1993) , vol.39 , pp. 931-945
    • Barron, A.R.1
  • 4
    • 85176674881 scopus 로고
    • Springer-Verlag New York
    • A. Benveniste M. Metivier P. Priouret Adaptive Algorithms and Stochastic Approximations. 1990 Springer-Verlag New York
    • (1990)
    • Benveniste, A.1    Metivier, M.2    Priouret, P.3
  • 5
    • 85176680380 scopus 로고
    • Wiley New York
    • P. Billingsley Probability and Measure. 1986 Wiley New York
    • (1986)
    • Billingsley, P.1
  • 6
    • 0026453958 scopus 로고
    • A. L. Blum R. L. Rivest Training a three-node neural network is NP-complete Neural Networks 5 117 127 1992
    • (1992) , vol.5 , pp. 117-127
    • Blum, A.L.1    Rivest, R.L.2
  • 7
    • 0025747581 scopus 로고
    • E. K. Blum L. K. Li Approximation theory and feedforward networks Neural Networks 4 511 515 1991
    • (1991) , vol.4 , pp. 511-515
    • Blum, E.K.1    Li, L.K.2
  • 8
    • 0024750852 scopus 로고
    • A. Blumer A. Ehrenfeucht D. Haussler M. Warmuth Learnability and the Vapnik̵Chervonenkis dimension J. Assoc. Comput. Machinery 36 4 929 965 1989
    • (1989) , vol.36 , Issue.4 , pp. 929-965
    • Blumer, A.1    Ehrenfeucht, A.2    Haussler, D.3    Warmuth, M.4
  • 9
    • 33747510605 scopus 로고
    • E. M. Braverman E. S. Pjatnickii Estimation of the rate of convergence of algorithm based on the potential functions method Automat. Remote Contr. 27 1 80 100 1966
    • (1966) , vol.27 , Issue.1 , pp. 80-100
    • Braverman, E.M.1    Pjatnickii, E.S.2
  • 10
    • 84916504670 scopus 로고
    • C. H. Chen H. Lai A comparison study of the gradient descent and the conjugate gradient backpropagation neural networks Proc. World Congr. Neural Networks III 401 406 1993
    • (1993) , vol.III , pp. 401-406
    • Chen, C.H.1    Lai, H.2
  • 11
    • 85176690441 scopus 로고
    • Wiley New York
    • H. F. Chen Recursive Estimation and Control for Stochastic Systems. 1985 Wiley New York
    • (1985)
    • Chen, H.F.1
  • 12
    • 85176665781 scopus 로고
    • Birkha¨user MA, Boston
    • H. F. Chen L. Guo Identification and Stochastic Adaptive Control. 1991 Birkha¨user MA, Boston
    • (1991)
    • Chen, H.F.1    Guo, L.2
  • 13
    • 0023348346 scopus 로고
    • T.-S. Chiang C.-R. Hwang S.-J. Sheu Diffusion for global optimization in $R^n$ SIAM J. Contr. Optimization 25 3 737 753 1987
    • (1987) , vol.25 , Issue.3 , pp. 737-753
    • Chiang, T.-S.1    Hwang, C.-R.2    Sheu, S.-J.3
  • 14
    • 0024861871 scopus 로고
    • G. Cybenko Approximation by superpositions of a sigmoidal function Math. Contr., Signals, Syst. 2 303 314 1989
    • (1989) , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 15
    • 85176685988 scopus 로고
    • J. E. Moody S. J. Hanson R. P. Lippmann Morgan Kaufmann CA, San Mateo
    • J. E. Moody S. J. Hanson R. P. Lippmann Toward faster stochastic gradient search Advances In Neural Information Processing Systems 4 1010 1016 1992 Morgan Kaufmann CA, San Mateo
    • (1992) , vol.4 , pp. 1010-1016
  • 16
    • 85176693968 scopus 로고
    • Wiley New York
    • J. L. Doob Stochastic Processes. 1953 Wiley New York
    • (1953)
    • Doob, J.L.1
  • 17
    • 0027632576 scopus 로고
    • A. Farago G. Lugosi Strong universal consistency of neural network classifier IEEE Trans. Inform. Theory 39 1146 1151 1993 18 6268 243433
    • (1993) , vol.39 , pp. 1146-1151
    • Farago, A.1    Lugosi, G.2
  • 18
    • 85176678219 scopus 로고
    • S. T. Hanson J. D. Cowan C. L. Giles Morgan Kaufmann CA, San Mateo
    • S. T. Hanson J. D. Cowan C. L. Giles Diffusion approximations for the constant learning rate backpropagation algorithm and resistance to local minima Advances in Neural Information Processing Systems 5 459 466 1993 Morgan Kaufmann CA, San Mateo
    • (1993) , vol.5 , pp. 459-466
  • 19
    • 85176679170 scopus 로고
    • L. Fisher S. J. Yakowitz Uniform convergence of the potential function algorithm SIAM J. Contr. Optimization 63 9 95 103 1976
    • (1976) , vol.63 , Issue.9 , pp. 95-103
    • Fisher, L.1    Yakowitz, S.J.2
  • 21
    • 0000253055 scopus 로고
    • H. L. Frisch C. Borzi G. Ord J. K. Percus G. O. Williams Approximate representation of functions of several variables in terms of functions of one variable Phys. Rev. Lett. 63 9 927 929 1989
    • (1989) , vol.63 , Issue.9 , pp. 927-929
    • Frisch, H.L.1    Borzi, C.2    Ord, G.3    Percus, J.K.4    Williams, G.O.5
  • 22
    • 0024866495 scopus 로고
    • K. Funahashi On the approximate realizations of continuous mappings by neural networks Neural Networks 2 183 192 1989
    • (1989) , vol.2 , pp. 183-192
    • Funahashi, K.1
  • 23
    • 0001276141 scopus 로고
    • S. B. Gelfand S. J. Mitter Metropolis-type annealing algorithms for global optimization in $R^d$ SIAM J. Contr. Optimization 31 1 111 131 1993
    • (1993) , vol.31 , Issue.1 , pp. 111-131
    • Gelfand, S.B.1    Mitter, S.J.2
  • 24
    • 0026923443 scopus 로고
    • L. Gerencser Rate of convergence of recursive estimators SIAM J. Contr. Optimization 30 5 1200 1227 1992
    • (1992) , vol.30 , Issue.5 , pp. 1200-1227
    • Gerencser, L.1
  • 25
    • 0000875045 scopus 로고
    • P. Hall On projection pursuit regression Ann. Statist. 17 2 573 588 1989
    • (1989) , vol.17 , Issue.2 , pp. 573-588
    • Hall, P.1
  • 26
    • 85176694387 scopus 로고
    • Academic New York
    • P. Hall C. C. Heyde Martingale Limit Theory and Its Applications. 1980 Academic New York
    • (1980)
    • Hall, P.1    Heyde, C.C.2
  • 27
    • 0024137490 scopus 로고
    • R. A. Jacobs Increased rates of convergence through learning rate adaptation Neural Networks 1 295 307 1988
    • (1988) , vol.1 , pp. 295-307
    • Jacobs, R.A.1
  • 28
    • 0001321136 scopus 로고
    • A. Kolmogorov On the representation of continuous functions of many variables by superpositions of continuous functions of one variable and addition Doklady Akademii Nauk SSSR 114 5 953 956 1957
    • (1957) , vol.114 , Issue.5 , pp. 953-956
    • Kolmogorov, A.1
  • 29
    • 0026627415 scopus 로고
    • V. Kurkova Kolmogorov's theorem and multilayer neural networks Neural Networks 5 501 506 1992
    • (1992) , vol.5 , pp. 501-506
    • Kurkova, V.1
  • 30
    • 85176690786 scopus 로고
    • Springer-Verlag New York
    • H. J. Kushner D. S. Clark Stochastic Approximations for Constrained and Unconstrained Systems. 1979 Springer-Verlag New York
    • (1979)
    • Kushner, H.J.1    Clark, D.S.2
  • 31
    • 0027262895 scopus 로고
    • M. Leshno V. Ya. Lin A. Pinkus S. Schocken Multilayer feedforward networks with a nonpolynomial activation function can approximate any function Neural Networks 6 861 867 1993
    • (1993) , vol.6 , pp. 861-867
    • Leshno, M.1    Lin, V.Ya.2    Pinkus, A.3    Schocken, S.4
  • 32
    • 0017526570 scopus 로고
    • L. Ljung Analysis of recursive stochastic algorithms IEEE Trans. Automat. Contr. AC-22 4 551 575 1977
    • (1977) , vol.AC-22 , Issue.4 , pp. 551-575
    • Ljung, L.1
  • 33
    • 85176694152 scopus 로고
    • Chelsea New York
    • G. G. Lorentz Representation of Functions. 1986 Chelsea New York
    • (1986)
    • Lorentz, G.G.1
  • 34
    • 0000358945 scopus 로고
    • H. N. Mhaskar C. A. Micchelli Approximation by superposition of sigmoidal and radial basis functions Advances Appl. Math. 13 350 373 1992
    • (1992) , vol.13 , pp. 350-373
    • Mhaskar, H.N.1    Micchelli, C.A.2
  • 35
    • 85176692036 scopus 로고
    • Morgan Kaufmann CA, San Mateo
    • B. K. Natarajan Machine Learning: A Theoretical Approach. 1991 Morgan Kaufmann CA, San Mateo
    • (1991)
    • Natarajan, B.K.1
  • 36
    • 0027632250 scopus 로고
    • V. Nedeljkovic A novel multilayer neural networks training algorithm that minimizes the probability of classification error IEEE Trans. Neural Networks 4 650 659 1993 72 6121 238319
    • (1993) , vol.4 , pp. 650-659
    • Nedeljkovic, V.1
  • 37
    • 26844550449 scopus 로고
    • B. T. Polyak Convergence and convergence rate of iterative stochastic algorithms I: General case Automat. Remote Contr. 12 1858 1868 1976
    • (1976) , vol.12 , pp. 1858-1868
    • Polyak, B.T.1
  • 38
    • 0026899240 scopus 로고
    • B. T. Polyak A. B. Juditsky Acceleration of stochastic approximation by averaging SIAM J. Contr. Optimization 30 4 838 855 1992
    • (1992) , vol.30 , Issue.4 , pp. 838-855
    • Polyak, B.T.1    Juditsky, A.B.2
  • 39
    • 85176678075 scopus 로고
    • Academic New York
    • B. L. S. Prakasa Rao Nonparametric Functional Estimation. 1983 Academic New York
    • (1983)
    • Prakasa Rao, B.L.S.1
  • 40
    • 85176668845 scopus 로고
    • N. S. V. Rao Fusion rule estimation in multiple sensor systems with unknown noise densities J. Franklin Inst. 331B 5 509 530 1995
    • (1995) , vol.331B , Issue.5 , pp. 509-530
    • Rao, N.S.V.1
  • 41
    • 85176689263 scopus 로고    scopus 로고
    • N. S. V. Rao V. Protopopescu Algorithms for {PAC} learning of functions with smoothness properties Proc. 4th Int. Symp. Artificial Intell. Math. 134 137 1996
    • (1996) , pp. 134-137
    • Rao, N.S.V.1    Protopopescu, V.2
  • 42
    • 85176681978 scopus 로고    scopus 로고
    • N. S. V. Rao V. R. R. Uppuluri E. M. Oblow Stochastic approximation algorithms for classes of PAC learning problem Proc. 1994 IEEE Conf. Neural Networks 791 796 3013 8557 374279
    • Rao, N.S.V.1    Uppuluri, V.R.R.2    Oblow, E.M.3
  • 43
    • 0001472961 scopus 로고
    • P. Revesz How to apply the method of stochastic approximation in the nonparametric estimation of a regression function Math. Operationsforsch. Statist. Statist. 8 1 119 126 1977
    • (1977) , vol.8 , Issue.1 , pp. 119-126
    • Revesz, P.1
  • 44
    • 0000016172 scopus 로고
    • H. Robbins S. Monro A stochastic approximation method Ann. Math. Statist. 22 400 407 1951
    • (1951) , vol.22 , pp. 400-407
    • Robbins, H.1    Monro, S.2
  • 45
    • 85176677981 scopus 로고
    • J. S. Rustagi Academic New York
    • J. S. Rustagi A convergence theorem for nonnegative almost supermartingales and some applications Optimizing Methods in Statistics 233 258 1971 Academic New York
    • (1971) , pp. 233-258
  • 46
    • 85176685191 scopus 로고
    • D. E. Rumelhart J. L. McClelland MIT Press MA, Cambridge
    • D. E. Rumelhart J. L. McClelland Learning internal representations by error propagation Parallel and Distributed Processing: Explorations in the Microstructures of Cognition 1986 MIT Press MA, Cambridge
    • (1986)
  • 47
    • 0043224019 scopus 로고
    • D. Ruppert A Newton̵Raphson version of the multivariate Robbins̵Monroe procedure Ann. Statist. 13 1 236 245 1985
    • (1985) , vol.13 , Issue.1 , pp. 236-245
    • Ruppert, D.1
  • 48
    • 85176680137 scopus 로고
    • A. Griewank G. F. Corliss SIAM PA, Philadelphia
    • A. Griewank G. F. Corliss Neural networks, backpropagation, and automatic differentiation Automatic Differentiation of Algorithms: Theory, Implementation, and Application 31 42 1991 SIAM PA, Philadelphia
    • (1991) , pp. 31-42
  • 49
    • 0026953356 scopus 로고
    • E. D. Sontag Feedback stabilization using two-hidden-layer nets IEEE Trans. Neural Networks 3 981 990 1992 72 4264 165599
    • (1992) , vol.3 , pp. 981-990
    • Sontag, E.D.1
  • 50
    • 85176681360 scopus 로고
    • V. Milutinovic P. Antognelli Prentice-Hall NJ, Englewood Cliffs
    • V. Milutinovic P. Antognelli Training of multilayer perceptrons by stochastic approximation Neural Networks, Concepts, Applications and Implementations IV 201 239 1991 Prentice-Hall NJ, Englewood Cliffs
    • (1991) , vol.IV , pp. 201-239
  • 51
    • 0028256912 scopus 로고
    • Z. Tang G. J. Koehler Deterministic global optimal FNN training algorithms Neural Networks 7 2 301 311 1994
    • (1994) , vol.7 , Issue.2 , pp. 301-311
    • Tang, Z.1    Koehler, G.J.2
  • 52
    • 85176683539 scopus 로고
    • Ya. Z. Tsypkin Establishing characteristics of a function transformer from randomly observed points Automat. Remote Contr. 26 1878 1881 1965
    • (1965) , vol.26 , pp. 1878-1881
    • Tsypkin, Ya.Z.1
  • 53
    • 0021518106 scopus 로고
    • L. G. Valiant A theory of the learnable Comm. ACM 27 11 1134 1142 1984
    • (1984) , vol.27 , Issue.11 , pp. 1134-1142
    • Valiant, L.G.1
  • 54
    • 0005018538 scopus 로고
    • P. P. van der Smagt Minimization methods for training feedforward neural networks Neural Networks 7 1 1 11 1994
    • (1994) , vol.7 , Issue.1 , pp. 1-11
    • van der Smagt, P.P.1
  • 55
    • 85176688847 scopus 로고
    • Springer-Verlag New York
    • V. N. Vapnik Estimation of Dependences Based on Empirical Data. 1982 Springer-Verlag New York
    • (1982)
    • Vapnik, V.N.1
  • 56
    • 85176679022 scopus 로고
    • Cambridge Univ. Press U.K., Cambridge
    • M. T. Wasan Stochastic Approximation. 1969 Cambridge Univ. Press U.K., Cambridge
    • (1969)
    • Wasan, M.T.1
  • 57
    • 0025503558 scopus 로고
    • P. J. Werbos Backpropagation through time: What it does and how to do it Proc. IEEE 78 10 1550 1560 1990 5 2116 58337
    • (1990) , vol.78 , Issue.10 , pp. 1550-1560
    • Werbos, P.J.1
  • 58
    • 85176687573 scopus 로고
    • H. White Some asymptotic results for learning in single hidden layer feedforward network models J. Amer. Statist. Assoc. 84 1008 1013 1989
    • (1989) , vol.84 , pp. 1008-1013
    • White, H.1
  • 59
    • 0026955103 scopus 로고
    • Q. Zhang A. Benveniste Wavelet networks IEEE Trans. Neural Networks 3 889 898 1992 72 4264 165591
    • (1992) , vol.3 , pp. 889-898
    • Zhang, Q.1    Benveniste, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.