메뉴 건너뛰기




Volumn 41, Issue 7, 1996, Pages 1009-1012

Kharitonov's theorem extension to interval polynomials which can drop in degree: A Nyquist approach

Author keywords

[No Author keywords available]

Indexed keywords

MATHEMATICAL MODELS; NYQUIST DIAGRAMS; POLYNOMIALS; ROOT LOCI; SYSTEM STABILITY;

EID: 0030189164     PISSN: 00189286     EISSN: None     Source Type: Journal    
DOI: 10.1109/9.508907     Document Type: Article
Times cited : (13)

References (6)
  • 2
    • 0024736523 scopus 로고
    • An edge theorem for polytopes of polynomials which can drop in degree
    • A. Sideris and B. R. Barmish, "An edge theorem for polytopes of polynomials which can drop in degree," Syst. Contr. Lett., vol. 13, pp. 233-238, 1989.
    • (1989) Syst. Contr. Lett. , vol.13 , pp. 233-238
    • Sideris, A.1    Barmish, B.R.2
  • 4
    • 0024104520 scopus 로고
    • Kharitonov's theorem revisited
    • S. Dasgupta, "Kharitonov's theorem revisited," Syst. Contr. Lett., vol. 11, pp. 381-384, 1988.
    • (1988) Syst. Contr. Lett. , vol.11 , pp. 381-384
    • Dasgupta, S.1
  • 5
    • 0024731760 scopus 로고
    • An elementary proof of Kharitonov's stability theorem with extensions
    • R. J. Minnichelli, J. J. Anagnost, and C. A. Desoer, "An elementary proof of Kharitonov's stability theorem with extensions," IEEE Trans. Automat. Contr., vol. 34. pp. 995-998, 1989.
    • (1989) IEEE Trans. Automat. Contr. , vol.34 , pp. 995-998
    • Minnichelli, R.J.1    Anagnost, J.J.2    Desoer, C.A.3
  • 6
    • 0023288508 scopus 로고
    • Stability of families of polynomials: Geometric considerations in coefficient space
    • H. Lin, C. V. Hollot, and A. C. Bartlett, "Stability of families of polynomials: Geometric considerations in coefficient space," Int. J. Contr., vol. 45, pp. 649-660, 1987.
    • (1987) Int. J. Contr. , vol.45 , pp. 649-660
    • Lin, H.1    Hollot, C.V.2    Bartlett, A.C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.