메뉴 건너뛰기




Volumn 128, Issue 2, 1996, Pages 379-386

Uniqueness of the positive radial solution on an annulus of the Dirichlet problem for Δu - u + u3 = 0

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0030188065     PISSN: 00220396     EISSN: None     Source Type: Journal    
DOI: 10.1006/jdeq.1996.0100     Document Type: Article
Times cited : (21)

References (12)
  • 1
    • 21144474681 scopus 로고
    • A geometric proof of the Kwong-Mcleod uniqueness result
    • 1. C. B. CLEMONS AND C. K. R. T. JONES, A geometric proof of the Kwong-McLeod uniqueness result, SIAM J. Math. Anal. 24 (1993), 436-443.
    • (1993) SIAM J. Math. Anal. , vol.24 , pp. 436-443
    • Clemons, C.B.1    Jones, C.K.R.T.2
  • 2
    • 0015249887 scopus 로고
    • 3 = 0 and variational characterization of other solutions
    • 3 = 0 and variational characterization of other solutions, Arch. Rational Mech. Anal. 46 (1972), 81-95.
    • (1972) Arch. Rational Mech. Anal. , vol.46 , pp. 81-95
    • Coffman, C.V.1
  • 3
    • 0000919109 scopus 로고
    • A non-linear boundary value problem with many positive solutions
    • 3. C. V. COFFMAN, A non-linear boundary value problem with many positive solutions, J. Differential Equations 54 (1984), 429-437.
    • (1984) J. Differential Equations , vol.54 , pp. 429-437
    • Coffman, C.V.1
  • 4
    • 34250271532 scopus 로고
    • Symmetry and related properties via the maximum principle
    • 4. N. GIDAS, M. NI, AND L. NIRENBERG, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), 209-243.
    • (1979) Comm. Math. Phys. , vol.68 , pp. 209-243
    • Gidas, N.1    Ni, M.2    Nirenberg, L.3
  • 7
    • 84980080697 scopus 로고
    • Heavy rotating string - A non-linear eigenvalue problem
    • 7. I. KOLODNER, Heavy rotating string - A non-linear eigenvalue problem, Comm. Pure Appl. Math. 8 (1955), 395-408.
    • (1955) Comm. Pure Appl. Math. , vol.8 , pp. 395-408
    • Kolodner, I.1
  • 9
    • 84972508309 scopus 로고
    • Uniqueness of the positive solution of Δu + f(u) = 0 in an annulus
    • 9. M. K. KWONG AND L. ZHANG, Uniqueness of the positive solution of Δu + f(u) = 0 in an annulus, Differential Integral Equations 4 (1991), 583-599.
    • (1991) Differential Integral Equations , vol.4 , pp. 583-599
    • Kwong, M.K.1    Zhang, L.2
  • 10
    • 84968484623 scopus 로고
    • Existence of positive nonradial solutions for nonlinear elliptic equations in annular domains
    • 10. S.-S. LIN, Existence of positive nonradial solutions for nonlinear elliptic equations in annular domains, Trans. Amer. Math. Soc. 332 (1992), 775-791.
    • (1992) Trans. Amer. Math. Soc. , vol.332 , pp. 775-791
    • Lin, S.-S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.