-
1
-
-
0002764805
-
Proof of a theorem of A. N. Kolmogorov on the invariance of quasiperiodic motions under small perturbations of the Hamiltonian
-
1. V. I. ARNOLD, Proof of a theorem of A. N. Kolmogorov on the invariance of quasiperiodic motions under small perturbations of the Hamiltonian, Russian Math. Surveys 18 (1963), 9-36.
-
(1963)
Russian Math. Surveys
, vol.18
, pp. 9-36
-
-
Arnold, V.I.1
-
2
-
-
0003296676
-
A proof of Nekhoroshev's theorem for the stability times in nearly integrable Hamiltonian systems
-
2. G. BENETTIN, L. GALGANI, AND A. GIORGILLI, A proof of Nekhoroshev's theorem for the stability times in nearly integrable Hamiltonian systems, Celest. Mech. 37 (1985), 1-25.
-
(1985)
Celest. Mech.
, vol.37
, pp. 1-25
-
-
Benettin, G.1
Galgani, L.2
Giorgilli, A.3
-
3
-
-
0003260224
-
Stability of motions near resonances in quasi-integrable Hamiltonian systems
-
3. G. BENETTIN AND G. GALLAVOTTI, Stability of motions near resonances in quasi-integrable Hamiltonian systems, J. Statist. Phys. 44 (1986), 293-338.
-
(1986)
J. Statist. Phys.
, vol.44
, pp. 293-338
-
-
Benettin, G.1
Gallavotti, G.2
-
4
-
-
0001811172
-
Toward a quasi-periodic bifurcation theory
-
4. B. L. J. BRAAKSMA, H. W. BROER, AND G. B. HUITEMA, Toward a quasi-periodic bifurcation theory, Mem. Amer. Math. Soc. 421 (1990), 83-175.
-
(1990)
Mem. Amer. Math. Soc.
, vol.421
, pp. 83-175
-
-
Braaksma, B.L.J.1
Broer, H.W.2
Huitema, G.B.3
-
5
-
-
0002321444
-
A proof of the isoenergetic KAM-theorem from the "ordinary" one
-
5. H. W. BROER AND G. B. HUITEMA, A proof of the isoenergetic KAM-theorem from the "ordinary" one, J. Differential Equations 90 (1991), 52-60.
-
(1991)
J. Differential Equations
, vol.90
, pp. 52-60
-
-
Broer, H.W.1
Huitema, G.B.2
-
6
-
-
0001078319
-
Existence of KAM tori in degenerate Hamiltonian systems
-
6. CH.-Q. CHENG AND Y.-S. SUN, Existence of KAM tori in degenerate Hamiltonian systems, J. Differential Equations 114 (1994), 288-335.
-
(1994)
J. Differential Equations
, vol.114
, pp. 288-335
-
-
Cheng, Ch.-Q.1
Sun, Y.-S.2
-
7
-
-
0012097571
-
A universal instabililty of many-dimensional oscillator systems
-
7. B. V. CHIRIKOV, A universal instabililty of many-dimensional oscillator systems, Phys. Rep. 52 (1979), 263-379.
-
(1979)
Phys. Rep.
, vol.52
, pp. 263-379
-
-
Chirikov, B.V.1
-
8
-
-
0011426089
-
Effective stability for nearly integrable Hamiltonian systems
-
C. Perelló, C. Simó, and J. Solà-Morales, Eds., World Scientific, Signapore
-
8. A. DELSHAMS AND P. GUTIÉRREZ, Effective stability for nearly integrable Hamiltonian systems, in "Proceedings of the International Conference on Differential Equations, Barcelona 1991" (C. Perelló, C. Simó, and J. Solà-Morales, Eds.), Vol. 1, pp. 415-420, World Scientific, Signapore, 1993.
-
(1993)
Proceedings of the International Conference on Differential Equations, Barcelona 1991
, vol.1
, pp. 415-420
-
-
Delshams, A.1
Gutiérrez, P.2
-
9
-
-
85029970025
-
Nekhoroshev and KAM theorems revisited via a unified approach
-
J. Seimenis, Ed., Plenum, New York
-
9. A. DELSHAMS AND P. GUTIÉRREZ, Nekhoroshev and KAM theorems revisited via a unified approach, in "Hamiltonian Mechanics: Integrability and Chaotic Behaviour" (J. Seimenis, Ed.), pp. 299-306, Plenum, New York, 1994.
-
(1994)
Hamiltonian Mechanics: Integrability and Chaotic Behaviour
, pp. 299-306
-
-
Delshams, A.1
Gutiérrez, P.2
-
11
-
-
0001182022
-
Lie series method for vector fields and Hamiltonian perturbation theory
-
11. F. FASSÒ, Lie series method for vector fields and Hamiltonian perturbation theory, J. Appl. Math. Phys. (ZAMP) 41 (1990), 843-864.
-
(1990)
J. Appl. Math. Phys. (ZAMP)
, vol.41
, pp. 843-864
-
-
Fassò, F.1
-
12
-
-
0000163515
-
Effective stability for a Hamiltonian system near an elliptic equilibrium point, with an application to the restricted three body problem
-
12. A. GIORGILLI, A. DELSHAMS, E. FONTICH, L. GALGANI, AND C. SIMÓ, Effective stability for a Hamiltonian system near an elliptic equilibrium point, with an application to the restricted three body problem, J. Differential Equations 77 (1989), 167-198.
-
(1989)
J. Differential Equations
, vol.77
, pp. 167-198
-
-
Giorgilli, A.1
Delshams, A.2
Fontich, E.3
Galgani, L.4
Simó, C.5
-
13
-
-
0001859493
-
Rigorous estimates for the series expansions of Hamiltonian perturbation theory
-
13. A. GIORGILLI AND L. GALGANI, Rigorous estimates for the series expansions of Hamiltonian perturbation theory, Celest. Mech. 37 (1985), 95-112.
-
(1985)
Celest. Mech.
, vol.37
, pp. 95-112
-
-
Giorgilli, A.1
Galgani, L.2
-
14
-
-
0001441814
-
The general theory of dynamical systems and classical mechanics
-
R. H. Abraham and J. E. Marsden, Eds., second ed. Appendix, Benjamin/Cummings, Reading, MA
-
14. A. N. KOLMOGOROV, The general theory of dynamical systems and classical mechanics, in "Foundations of Mechanics" (R. H. Abraham and J. E. Marsden, Eds.), second ed. pp. 741-757 (Appendix), Benjamin/Cummings, Reading, MA, 1978.
-
(1978)
Foundations of Mechanics
, pp. 741-757
-
-
Kolmogorov, A.N.1
-
17
-
-
0003223907
-
Multiphase averaging for classical systems: With applications to adiabatic theorems
-
Springer-Verlag, New York
-
17. P. LOCHAK AND C. MEUNIER, "Multiphase Averaging for Classical systems: With Applications to Adiabatic Theorems," Applied Mathematical Sciences, Vol. 72, Springer-Verlag, New York, 1988.
-
(1988)
Applied Mathematical Sciences
, vol.72
-
-
Lochak, P.1
Meunier, C.2
-
18
-
-
0001514616
-
Estimates of stability time for nearly integrable systems with a quasiconvex Hamiltonian
-
18. P. LOCHAK AND A. I. NEISHTADT, Estimates of stability time for nearly integrable systems with a quasiconvex Hamiltonian, Chaos 2 (1992), 495-499.
-
(1992)
Chaos
, vol.2
, pp. 495-499
-
-
Lochak, P.1
Neishtadt, A.I.2
-
19
-
-
0011467595
-
Quantitative perturbation theory by successive elimination of harmonics
-
19. A. MORBIDELLI AND A. GIORGILLI, Quantitative perturbation theory by successive elimination of harmonics, Celest. Mech. 55 (1993), 131-159.
-
(1993)
Celest. Mech.
, vol.55
, pp. 131-159
-
-
Morbidelli, A.1
Giorgilli, A.2
-
20
-
-
34249759431
-
Superexponential stability of KAM tori
-
20. A. MORBIDELLI AND A. GIORGILLI, Superexponential stability of KAM tori, J. Statist. Phys. 78 (1995), 1607-1617.
-
(1995)
J. Statist. Phys.
, vol.78
, pp. 1607-1617
-
-
Morbidelli, A.1
Giorgilli, A.2
-
21
-
-
0001851184
-
On invariant curves of area-preserving mappings of an annulus
-
21. J. MOSER, On invariant curves of area-preserving mappings of an annulus, Nachr. Akad. Wiss. Göttingen: Math. Phys. Kl. II (1962), 1-20.
-
(1962)
Nachr. Akad. Wiss. Göttingen: Math. Phys. Kl.
, vol.2
, pp. 1-20
-
-
Moser, J.1
-
22
-
-
0002945849
-
Lectures on Hamiltonian systems
-
22. J. MOSER, Lectures on Hamiltonian systems, Mem. Amer. Math. Soc. 81 (1968), 1-60.
-
(1968)
Mem. Amer. Math. Soc.
, vol.81
, pp. 1-60
-
-
Moser, J.1
-
23
-
-
49049145278
-
Estimates in the Kolmogorov theorem on conservation of conditionally periodic motions
-
23. A. I. NEISHTADT, Estimates in the Kolmogorov theorem on conservation of conditionally periodic motions, J. Appl. Math. Mech. 45 (1982), 766-772.
-
(1982)
J. Appl. Math. Mech.
, vol.45
, pp. 766-772
-
-
Neishtadt, A.I.1
-
24
-
-
0021660205
-
The separation of motions in systems with rapidly rotating phase
-
24. A. I. NEISHTADT, The separation of motions in systems with rapidly rotating phase, J. Appl. Math. Mech. 48 (1984), 133-139.
-
(1984)
J. Appl. Math. Mech.
, vol.48
, pp. 133-139
-
-
Neishtadt, A.I.1
-
25
-
-
84908024292
-
An exponential estimate of the time of stability of neary-integrable Hamiltonian systems
-
25. N. N. NEKHOROSHEV, An exponential estimate of the time of stability of neary-integrable Hamiltonian systems, Russian Math. Surveys 32 (1977), 1-65.
-
(1977)
Russian Math. Surveys
, vol.32
, pp. 1-65
-
-
Nekhoroshev, N.N.1
-
26
-
-
0000677073
-
KAM tori are very sticky: Rigorous lower bounds on the time to move away from an invariant Lagrangian torus with linear flow
-
26. A. D. PERRY AND S. WIGGINS, KAM tori are very sticky: Rigorous lower bounds on the time to move away from an invariant Lagrangian torus with linear flow, Physica D 71 (1994), 102-121.
-
(1994)
Physica D
, vol.71
, pp. 102-121
-
-
Perry, A.D.1
Wiggins, S.2
-
27
-
-
84990623105
-
Integrability of Hamiltonian systems on Cantor sets
-
27. J. PÖSCHEL, Integrability of Hamiltonian systems on Cantor sets, Comm. Pure Appl. Math. XXXV (1982), 653-696.
-
(1982)
Comm. Pure Appl. Math.
, vol.35
, pp. 653-696
-
-
Pöschel, J.1
-
28
-
-
0001193375
-
Nekhoroshev estimates for quasi-convex Hamiltonian systems
-
28. J. PÖSCHEL, Nekhoroshev estimates for quasi-convex Hamiltonian systems, Math. Z. 213 (1993), 187-216.
-
(1993)
Math. Z.
, vol.213
, pp. 187-216
-
-
Pöschel, J.1
-
29
-
-
0040170409
-
Nondegeneracy in the perturbation theory of integrable dynamical systems
-
"Stochastics, Algebra and Analysis in Classical and Quantum Dynamics" (S. Albeverio, Ph. Blanchard and D. Testard, Eds), Kluwer, Dordrecht
-
29. H. RUSSMANN, Nondegeneracy in the perturbation theory of integrable dynamical systems, in "Stochastics, Algebra and Analysis in Classical and Quantum Dynamics" (S. Albeverio, Ph. Blanchard and D. Testard, Eds), pp. 211-223, Mathematics and its Applications, Vol. 59, Kluwer, Dordrecht, 1990.
-
(1990)
Mathematics and its Applications
, vol.59
, pp. 211-223
-
-
Russmann, H.1
-
31
-
-
0011424483
-
-
Preprint, E.T.H. Zürich
-
31. J. XIU, J. YOU, AND Q. QIU, Invariant tori for nearly integrable Hamiltonian systems with degeneracy, Preprint, E.T.H. Zürich, 1994.
-
(1994)
Invariant Tori for Nearly Integrable Hamiltonian Systems with Degeneracy
-
-
Xiu, J.1
You, J.2
Qiu, Q.3
|