메뉴 건너뛰기




Volumn 70, Issue 2, 1996, Pages 231-243

High order difference schemes for the system of two space second order nonlinear hyperbolic equations with variable coefficients

Author keywords

ADI method; Difference method; Hyperbolic equation; Nonlinear wave equation; Polar coordinates

Indexed keywords

BOUNDARY CONDITIONS; NONLINEAR EQUATIONS; NUMERICAL METHODS; PARTIAL DIFFERENTIAL EQUATIONS; PROBLEM SOLVING;

EID: 0030170705     PISSN: 03770427     EISSN: None     Source Type: Journal    
DOI: 10.1016/0377-0427(95)00201-4     Document Type: Article
Times cited : (27)

References (15)
  • 1
    • 84949795680 scopus 로고
    • Higher order compact implicit schemes for the wave equation
    • M. Ciment and S.H. Leventhal, Higher order compact implicit schemes for the wave equation, Math. Comp. 29 (1975) 985-994.
    • (1975) Math. Comp. , vol.29 , pp. 985-994
    • Ciment, M.1    Leventhal, S.H.2
  • 2
    • 84966238003 scopus 로고
    • A note on the operator compact implicit method for the wave equation
    • M. Ciment and S.H. Leventhal, A note on the operator compact implicit method for the wave equation, Math. Comp. 32 (1978) 143-147.
    • (1978) Math. Comp. , vol.32 , pp. 143-147
    • Ciment, M.1    Leventhal, S.H.2
  • 4
    • 0042021744 scopus 로고
    • Approximate solution of initial boundary wave equation problems by boundary-value techniques
    • D. Greenspan, Approximate solution of initial boundary wave equation problems by boundary-value techniques, Comm. ACM 11 (1968) 760-763.
    • (1968) Comm. ACM , vol.11 , pp. 760-763
    • Greenspan, D.1
  • 5
    • 0011707017 scopus 로고
    • High order difference methods for heat equation in polar cylindrical coordinates
    • S.R.K. Iyengar and R. Manohar, High order difference methods for heat equation in polar cylindrical coordinates, J. Comput. Phys. 77 (1988) 425-438.
    • (1988) J. Comput. Phys. , vol.77 , pp. 425-438
    • Iyengar, S.R.K.1    Manohar, R.2
  • 8
    • 0042021743 scopus 로고
    • High order difference methods for the system of one-dimensional second order hyperbolic equations with nonlinear first derivative terms
    • M.K. Jain, R.K. Jain and R.K. Mohanty, High order difference methods for the system of one-dimensional second order hyperbolic equations with nonlinear first derivative terms, J. Math. Phys. Sci. 26 (1992) 401-411.
    • (1992) J. Math. Phys. Sci. , vol.26 , pp. 401-411
    • Jain, M.K.1    Jain, R.K.2    Mohanty, R.K.3
  • 9
    • 0026946043 scopus 로고
    • Fourth-order finite difference method for three dimensional elliptic equations with nonlinear first derivative terms
    • M.K. Jain, R.K. Jain and R.K. Mohanty, Fourth-order finite difference method for three dimensional elliptic equations with nonlinear first derivative terms, Numer. Methods Partial Differential Equations 8 (1992) 575-591.
    • (1992) Numer. Methods Partial Differential Equations , vol.8 , pp. 575-591
    • Jain, M.K.1    Jain, R.K.2    Mohanty, R.K.3
  • 11
    • 0042082744 scopus 로고
    • Alternating direction methods for hyperbolic differential equations
    • M. Lees, Alternating direction methods for hyperbolic differential equations, J. Soc. Indust. Appl. Math. 10 (1962) 610-616.
    • (1962) J. Soc. Indust. Appl. Math. , vol.10 , pp. 610-616
    • Lees, M.1
  • 12
    • 0042850255 scopus 로고
    • High accuracy ADI methods for hyperbolic equations with variable coefficients
    • S. McKee, High accuracy ADI methods for hyperbolic equations with variable coefficients, J. Inst. Maths. Appl. 11 (1973) 105-109.
    • (1973) J. Inst. Maths. Appl. , vol.11 , pp. 105-109
    • McKee, S.1
  • 13
    • 0042535668 scopus 로고
    • Fourth order finite difference methods for the system of 2-D nonlinear elliptic equations with variable coefficients
    • R.K. Mohanty, Fourth order finite difference methods for the system of 2-D nonlinear elliptic equations with variable coefficients, Internat. J. Computer Math. 46 (1992) 195-206.
    • (1992) Internat. J. Computer Math. , vol.46 , pp. 195-206
    • Mohanty, R.K.1
  • 14
    • 0028255825 scopus 로고
    • Fourth order operator splitting method for the three space parabolic equation with variable coefficients
    • R.K. Mohanty and M.K. Jain, Fourth order operator splitting method for the three space parabolic equation with variable coefficients, Internat. J. Computer Math. 50 (1994) 55-64.
    • (1994) Internat. J. Computer Math. , vol.50 , pp. 55-64
    • Mohanty, R.K.1    Jain, M.K.2
  • 15
    • 0042522622 scopus 로고
    • Analytical linear stability criteria for the Leap-Frog, Dufort-Frankel method
    • B.C. Roisin, Analytical linear stability criteria for the Leap-Frog, Dufort-Frankel method, J. Comput. Phys. 53 (1984) 227-239.
    • (1984) J. Comput. Phys. , vol.53 , pp. 227-239
    • Roisin, B.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.