-
1
-
-
0002580664
-
Hardy classes of functions harmonic in a half space
-
1. A. B. ALEXSANDROV AND P. P. KARGAEV, Hardy classes of functions harmonic in a half space, Algebra i Anal. 5 (1993), 1-73; St. Petersburg Math. J. 5 (1994), 229-286.
-
(1993)
Algebra i Anal.
, vol.5
, pp. 1-73
-
-
Alexsandrov, A.B.1
Kargaev, P.P.2
-
2
-
-
0001170466
-
-
1. A. B. ALEXSANDROV AND P. P. KARGAEV, Hardy classes of functions harmonic in a half space, Algebra i Anal. 5 (1993), 1-73; St. Petersburg Math. J. 5 (1994), 229-286.
-
(1994)
St. Petersburg Math. J.
, vol.5
, pp. 229-286
-
-
-
3
-
-
0002594383
-
Uniform approximation by linear combinations of translations and dilations of a function
-
2. A. ATZMON, Uniform approximation by linear combinations of translations and dilations of a function, J. London Math. Soc. 27 (1983), 51-54.
-
(1983)
J. London Math. Soc.
, vol.27
, pp. 51-54
-
-
Atzmon, A.1
-
4
-
-
0001204015
-
Spectral synthesis and the Pompeiu problem
-
3. L. BROWN, M. SCHREIBER, AND B. A. TAYLOR, Spectral synthesis and the Pompeiu problem, Ann. Inst. Fourier, Grenoble 23 (1973), 125-154.
-
(1973)
Ann. Inst. Fourier, Grenoble
, vol.23
, pp. 125-154
-
-
Brown, L.1
Schreiber, M.2
Taylor, B.A.3
-
5
-
-
0011648080
-
Approximation of functions of n variables by quasipolynomials
-
4. JU. A. BRUDNYI, Approximation of functions of n variables by quasipolynomials, Izv. Akad. Nauk SSSR 34 (1970), 564-583; Math. USSR-Izv. 4 (1970), 568-586.
-
(1970)
Izv. Akad. Nauk SSSR
, vol.34
, pp. 564-583
-
-
Brudnyi, Ju.A.1
-
6
-
-
84956135234
-
-
4. JU. A. BRUDNYI, Approximation of functions of n variables by quasipolynomials, Izv. Akad. Nauk SSSR 34 (1970), 564-583; Math. USSR-Izv. 4 (1970), 568-586.
-
(1970)
Math. USSR-Izv.
, vol.4
, pp. 568-586
-
-
-
7
-
-
0001997768
-
Counterexamples to a problem of L. Schwartz
-
5. D. I. GUREVICH, Counterexamples to a problem of L. Schwartz, Funct. Anal. Appl. 197 (1975), 116-120.
-
(1975)
Funct. Anal. Appl.
, vol.197
, pp. 116-120
-
-
Gurevich, D.I.1
-
10
-
-
84972517973
-
Dilations of rapidly decreasing functions
-
8. S. R. HARASYMIV, Dilations of rapidly decreasing functions, Pacific J. Math. 31 (1969), 395-402.
-
(1969)
Pacific J. Math.
, vol.31
, pp. 395-402
-
-
Harasymiv, S.R.1
-
13
-
-
0011595675
-
Constructive multivariate approximation via sigmoidal functions with application to neural networks
-
(D. Braess and L. L. Schumaker, Eds.), ISNM 105, Birkhäuser, Basel
-
11. B. LENZE, Constructive multivariate approximation via sigmoidal functions with application to neural networks, in "Numerical Methods of Approximation Theory" (D. Braess and L. L. Schumaker, Eds.), pp. 155-175, ISNM 105, Birkhäuser, Basel, 1992.
-
(1992)
Numerical Methods of Approximation Theory
, pp. 155-175
-
-
Lenze, B.1
-
14
-
-
0011665457
-
Quantitative approximation results for sigma-pi-type neural network operators
-
(K. Jetter and F. Utreras, Eds.), World Scientific, Singapore
-
12. B. LENZE, Quantitative approximation results for sigma-pi-type neural network operators, in "Multivariate Approximation: From CAGD to Wavelets" (K. Jetter and F. Utreras, Eds.), pp. 193-209, World Scientific, Singapore, 1993.
-
(1993)
Multivariate Approximation: From CAGD to Wavelets
, pp. 193-209
-
-
Lenze, B.1
-
15
-
-
0027262895
-
Multilayer feedforward networks with a non-polynomial activation function can approximate any function
-
13. M. LESHNO, YA. V. LIN, A. PINKUS, AND S. SCHOCKEN, Multilayer feedforward networks with a non-polynomial activation function can approximate any function, Neural Networks 6 (1993), 861-867.
-
(1993)
Neural Networks
, vol.6
, pp. 861-867
-
-
Leshno, M.1
Lin, Ya.V.2
Pinkus, A.3
Schocken, S.4
-
16
-
-
38248999102
-
Fundamentality of ridge functions
-
14. V. YA. LIN AND A. PINKUS, Fundamentality of ridge functions, J. Approx. Theory 75 (1993), 295-311.
-
(1993)
J. Approx. Theory
, vol.75
, pp. 295-311
-
-
Lin, V.Ya.1
Pinkus, A.2
-
17
-
-
0000358945
-
Approximation by superposition of a sigmoidal function and radial basis functions
-
15. H. N. MHASKAR AND C. A. MICCHELLI, Approximation by superposition of a sigmoidal function and radial basis functions, Adv. in Appl. Math. 13 (1992), 350-373.
-
(1992)
Adv. in Appl. Math.
, vol.13
, pp. 350-373
-
-
Mhaskar, H.N.1
Micchelli, C.A.2
-
18
-
-
0011532121
-
Some analogues of Hartog's theorem in an algebraic setting
-
16. R. S. PALAIS, Some analogues of Hartog's theorem in an algebraic setting, Amer. J. Math. 100 (1978), 387-405.
-
(1978)
Amer. J. Math.
, vol.100
, pp. 387-405
-
-
Palais, R.S.1
-
19
-
-
0000106040
-
Universal approximation using radial-basis-function networks
-
17. J. PARK AND I. W. SANDBERG, Universal approximation using radial-basis-function networks, Neural Comp. 3 (1991), 246-257.
-
(1991)
Neural Comp.
, vol.3
, pp. 246-257
-
-
Park, J.1
Sandberg, I.W.2
-
20
-
-
0011661965
-
Sur certaines familles non fondamentales de fonctions continues
-
18. L. SCHWARTZ, Sur certaines familles non fondamentales de fonctions continues, Bull. Soc. Math. France 72 (1944), 141-145.
-
(1944)
Bull. Soc. Math. France
, vol.72
, pp. 141-145
-
-
Schwartz, L.1
-
21
-
-
0001714565
-
Théorie générale des fonctions moyenne-périodiques
-
19. L. SCHWARTZ, Théorie générale des fonctions moyenne-périodiques, Ann. of Math. 48 (1947), 857-928.
-
(1947)
Ann. of Math.
, vol.48
, pp. 857-928
-
-
Schwartz, L.1
-
22
-
-
84966238079
-
Affine invariant subspaces of C(ℂ)
-
20. Y. STERNFELD AND Y. WEIT, Affine invariant subspaces of C(ℂ), Proc. Amer. Math. Soc. 107 (1989), 231-236.
-
(1989)
Proc. Amer. Math. Soc.
, vol.107
, pp. 231-236
-
-
Sternfeld, Y.1
Weit, Y.2
-
23
-
-
0011654879
-
Approximation of continuous and differentiable functions of several variables by generalized polynomials (Finite linear combinations of functions of fewer variables)
-
21. A. I. VAINDINER, Approximation of continuous and differentiable functions of several variables by generalized polynomials (Finite linear combinations of functions of fewer variables), Dokl. Akad. Nauk. 192 (1970), 483-486; Soviet. Math. Dokl. 11 (1970), 648-652.
-
(1970)
Dokl. Akad. Nauk.
, vol.192
, pp. 483-486
-
-
Vaindiner, A.I.1
-
24
-
-
0011595127
-
-
21. A. I. VAINDINER, Approximation of continuous and differentiable functions of several variables by generalized polynomials (Finite linear combinations of functions of fewer variables), Dokl. Akad. Nauk. 192 (1970), 483-486; Soviet. Math. Dokl. 11 (1970), 648-652.
-
(1970)
Soviet. Math. Dokl.
, vol.11
, pp. 648-652
-
-
|