메뉴 건너뛰기




Volumn 38, Issue 2, 1996, Pages 131-138

A point-process model incorporating renewals and time trends, with application to repairable systems

Author keywords

Estimation; Poisson process; Recurrent events; Renewal process; Simulation; Trend tests

Indexed keywords

APPROXIMATION THEORY; COMPUTER SIMULATION; ESTIMATION; FAILURE ANALYSIS; FUNCTIONS; MATHEMATICAL MODELS; REPAIR;

EID: 0030150789     PISSN: 00401706     EISSN: 15372723     Source Type: Journal    
DOI: 10.1080/00401706.1996.10484458     Document Type: Article
Times cited : (82)

References (21)
  • 3
    • 0019050186 scopus 로고
    • Inferences on the Parameters and Current System Reliability for a Time Truncated Weibull Process
    • Bain, L. J., and Engelhardt, M. (1980), “Inferences on the Parameters and Current System Reliability for a Time Truncated Weibull Process,” Technometrics, 22, 421-426.
    • (1980) Technometrics , vol.22 , pp. 421-426
    • Bain, L.J.1    Engelhardt, M.2
  • 5
    • 0002733195 scopus 로고
    • Approximating Point Process Likelihoods With GLIM
    • Berman, M., and Turner, T. R. (1992), “Approximating Point Process Likelihoods With GLIM,” Applied Statistics, 41, 31-38.
    • (1992) Applied Statistics , vol.41 , pp. 31-38
    • Berman, M.1    Turner, T.R.2
  • 6
    • 0002677308 scopus 로고
    • The Statistical Analysis of Dependencies in Point Processes
    • P. A. W. Lewis, New York: John Wiley
    • Cox, D. R. (1972), “The Statistical Analysis of Dependencies in Point Processes,” in Stochastic Point Processes, ed. P. A. W. Lewis, New York: John Wiley, pp. 55-66.
    • (1972) Stochastic Point Processes , pp. 55-66
    • Cox, D.R.1
  • 9
    • 0001782167 scopus 로고
    • Reliability Analysis for Complex, Repairable Systems
    • F. Proschan and R. J. Serfling, Philadelphia: SIAM
    • Crow, L. H. (1974), “Reliability Analysis for Complex, Repairable Systems,” in Reliability and Biometry, eds. F. Proschan and R. J. Serfling, Philadelphia: SIAM, pp. 379-410.
    • (1974) Reliability and Biometry , pp. 379-410
    • Crow, L.H.1
  • 10
    • 0020089190 scopus 로고
    • Confidence Interval Procedures for the Weibull Process With Applications to Reliability Growth
    • Crow, L. H. (1982), “Confidence Interval Procedures for the Weibull Process With Applications to Reliability Growth,” Technometrics, 24, 67-72.
    • (1982) Technometrics , vol.24 , pp. 67-72
    • Crow, L.H.1
  • 14
    • 0000737043 scopus 로고
    • Testing Adequacy of the Weibull and Log Linear Rate Models for a Poisson Process
    • Lee, L. (1980), “Testing Adequacy of the Weibull and Log Linear Rate Models for a Poisson Process,” Technometrics, 22, 195-199.
    • (1980) Technometrics , vol.22 , pp. 195-199
    • Lee, L.1
  • 15
    • 0017936779 scopus 로고
    • Some Results on Inference for the Weibull Process
    • Lee, L., and Lee, K. (1978), “Some Results on Inference for the Weibull Process,” Technometrics, 20, 41-45.
    • (1978) Technometrics , vol.20 , pp. 41-45
    • Lee, L.1    Lee, K.2
  • 16
    • 0039507735 scopus 로고
    • Testing for a Monotone Trend in a Modulated Renewal Process
    • F. Proschan and R. J. Serfling, Philadelphia: SIAM
    • Lewis, P. A. W., and Robinson, D. W. (1974), “Testing for a Monotone Trend in a Modulated Renewal Process,” in Reliability and Biometry, eds. F. Proschan and R. J. Serfling, Philadelphia: SIAM, pp. 163-182.
    • (1974) Reliability and Biometry , pp. 163-182
    • Lewis, P.A.W.1    Robinson, D.W.2
  • 17
    • 0002248201 scopus 로고
    • On Semi-parametric Inference for Modulated Renewal Processes
    • Oakes, D., and Cui, L. (1994), “On Semi-parametric Inference for Modulated Renewal Processes,” Biometrika, 81, 83-90.
    • (1994) Biometrika , vol.81 , pp. 83-90
    • Oakes, D.1    Cui, L.2
  • 19
    • 84946632766 scopus 로고
    • Theoretical Explanation of Observed Decreasing Failure Rate
    • Proschan, F. (1963), “Theoretical Explanation of Observed Decreasing Failure Rate,” Technometrics, 5, 375-383.
    • (1963) Technometrics , vol.5 , pp. 375-383
    • Proschan, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.