메뉴 건너뛰기




Volumn 34, Issue 3, 1996, Pages 1001-1043

Finite-dimensional approximation of a class of constrained nonlinear optimal control problems

Author keywords

Finite dimensional approximation; Finite element methods; Ginzburg Landau equations; Navier Stokes equations; Nonlinear partial differential equations; Optimal control; Von K rm n equations

Indexed keywords

APPROXIMATION THEORY; ERRORS; FINITE ELEMENT METHOD; LAGRANGE MULTIPLIERS; NAVIER STOKES EQUATIONS; NONLINEAR CONTROL SYSTEMS; OPTIMIZATION; PARTIAL DIFFERENTIAL EQUATIONS; VECTORS;

EID: 0030150056     PISSN: 03630129     EISSN: None     Source Type: Journal    
DOI: 10.1137/S0363012994262361     Document Type: Article
Times cited : (117)

References (22)
  • 3
    • 84979130379 scopus 로고
    • On the boundary value problem of the biharmonic operator on domains with angular corners
    • H. BLUM AND R. RANNACHER, On the boundary value problem of the biharmonic operator on domains with angular corners, Math. Methods Appl. Sci., 2 (1980), pp. 556-581.
    • (1980) Math. Methods Appl. Sci. , vol.2 , pp. 556-581
    • Blum, H.1    Rannacher, R.2
  • 4
    • 0016093926 scopus 로고
    • On the existence, uniqueness, and approximation of saddle-point problems arising from Lagrange multipliers
    • F. BREZZI, On the existence, uniqueness, and approximation of saddle-point problems arising from Lagrange multipliers, RAIRO Modél. Math. Anal. Numér., 8 (1974), pp. 129-151.
    • (1974) RAIRO Modél. Math. Anal. Numér. , vol.8 , pp. 129-151
    • Brezzi, F.1
  • 6
    • 0002435262 scopus 로고
    • Finite-dimensional approximation of nonlinear problems. Part I: Branches of nonsingular solutions
    • F. BREZZI, J. RAPPAZ, AND P. RAVIART, Finite-dimensional approximation of nonlinear problems. Part I: Branches of nonsingular solutions, Numer. Math., 36 (1980), pp. 1-25.
    • (1980) Numer. Math. , vol.36 , pp. 1-25
    • Brezzi, F.1    Rappaz, J.2    Raviart, P.3
  • 7
    • 0000715606 scopus 로고
    • Simplified Ginzburg-Landau models for superconductivity valid for high kappa and high fields
    • J. CHAPMAN, Q. DU, M. GUNZBURGER, AND J. PETERSON, Simplified Ginzburg-Landau models for superconductivity valid for high kappa and high fields, Adv. Math. Sci. Appl., 5 (1995), pp. 193-218.
    • (1995) Adv. Math. Sci. Appl. , vol.5 , pp. 193-218
    • Chapman, J.1    Du, Q.2    Gunzburger, M.3    Peterson, J.4
  • 11
    • 0026838281 scopus 로고
    • Analysis and approximation of the Ginzburg-Landau model of superconductivity
    • Q. DU, M. GUNZBURGER, AND J. PETERSON, Analysis and approximation of the Ginzburg-Landau model of superconductivity, SIAM Rev., 34 (1992), pp. 54-81.
    • (1992) SIAM Rev. , vol.34 , pp. 54-81
    • Du, Q.1    Gunzburger, M.2    Peterson, J.3
  • 12
    • 0002034548 scopus 로고
    • On the unique continuation property for Schödinger Hamiltonians
    • V. GEORGESCU, On the unique continuation property for Schödinger Hamiltonians, Helv. Phys. Acta, 52 (1979), pp. 655-670.
    • (1979) Helv. Phys. Acta , vol.52 , pp. 655-670
    • Georgescu, V.1
  • 15
    • 0026843540 scopus 로고
    • Treating inhomogeneous essential boundary conditions in finite element methods and the calculation of boundary stresses
    • M. GUNZBURGER AND L. HOU, Treating inhomogeneous essential boundary conditions in finite element methods and the calculation of boundary stresses, SIAM J. Numer. Anal., 29 (1992), pp. 390-424.
    • (1992) SIAM J. Numer. Anal. , vol.29 , pp. 390-424
    • Gunzburger, M.1    Hou, L.2
  • 16
    • 0001149281 scopus 로고
    • Analysis and finite element approximation of optimal control problems for the stationary Navier-Stokes equations with Dirichlet controls
    • M. GUNZBURGER, L. HOU, AND T. SVOBODNY, Analysis and finite element approximation of optimal control problems for the stationary Navier-Stokes equations with Dirichlet controls, RAIRO Modél. Math. Anal. Numér., 25 (1991), pp. 711-748.
    • (1991) RAIRO Modél. Math. Anal. Numér. , vol.25 , pp. 711-748
    • Gunzburger, M.1    Hou, L.2    Svobodny, T.3
  • 17
    • 0004064325 scopus 로고
    • Optimization problems for the Navier-Stokes equations with regular boundary controls
    • L. HOU AND T. SVOBODNY, Optimization problems for the Navier-Stokes equations with regular boundary controls, J. Math. Anal. Appl., 177 (1993), pp. 342-367.
    • (1993) J. Math. Anal. Appl. , vol.177 , pp. 342-367
    • Hou, L.1    Svobodny, T.2
  • 19
    • 0040075647 scopus 로고
    • Unique continuation and uniqueness of the Cauchy problem for elliptic operators with unbounded coefficients
    • H. Brezis and J. Lions, eds., Longman, New York
    • J. SAUT AND B. SCHEURER, Unique continuation and uniqueness of the Cauchy problem for elliptic operators with unbounded coefficients, in Applications of Nonlinear Partial Differential Equations, H. Brezis and J. Lions, eds., Longman, New York, 1982, pp. 260-275.
    • (1982) Applications of Nonlinear Partial Differential Equations , pp. 260-275
    • Saut, J.1    Scheurer, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.