메뉴 건너뛰기




Volumn 32, Issue 11, 1996, Pages 1016-1018

Time difference simultaneous perturbation method

Author keywords

Neural networks; Simultaneous perturbation; Stochastic approximation

Indexed keywords

ALGORITHMS; APPROXIMATION THEORY; FINITE DIFFERENCE METHOD; HEURISTIC METHODS; OPTIMIZATION; RANDOM PROCESSES; VECTORS;

EID: 0030145948     PISSN: 00135194     EISSN: None     Source Type: Journal    
DOI: 10.1049/el:19960637     Document Type: Article
Times cited : (6)

References (8)
  • 1
    • 0023600390 scopus 로고
    • A stochastic approximation technique for generating maximum likelihood parameter estimates
    • SPALL, J.C.: 'A stochastic approximation technique for generating maximum likelihood parameter estimates'. Proc. of the 1987 American Control Conference, 1987, pp. 1161-1167
    • (1987) Proc. of the 1987 American Control Conference , pp. 1161-1167
    • Spall, J.C.1
  • 2
    • 0024169394 scopus 로고
    • A stochastic approximation algorithm for large-dimensional systems in the Kiefer-Wolfowitz setting
    • SPALL, J.C.: 'A stochastic approximation algorithm for large-dimensional systems in the Kiefer-Wolfowitz setting'. Proc. of the 27th IEEE Conference on Decision and Control, 1988, pp. 1544-1548
    • (1988) Proc. of the 27th IEEE Conference on Decision and Control , pp. 1544-1548
    • Spall, J.C.1
  • 3
    • 0026839090 scopus 로고
    • Multivariable stochastic approximation using a simultaneous perturbation gradient approximation
    • SPALL, J.C.: 'Multivariable stochastic approximation using a simultaneous perturbation gradient approximation', IEEE Trans., 1992, AC-37, pp. 332-341
    • (1992) IEEE Trans. , vol.AC-37 , pp. 332-341
    • Spall, J.C.1
  • 4
    • 0029048472 scopus 로고
    • A learning rule of neural networks via simultaneous perturbation and its hardware implementation
    • MAEDA, Y., HIRANO, H., and KANATA, Y.: 'A learning rule of neural networks via simultaneous perturbation and its hardware implementation', Neural Netw., 1995, 8, pp. 251-259
    • (1995) Neural Netw. , vol.8 , pp. 251-259
    • Maeda, Y.1    Hirano, H.2    Kanata, Y.3
  • 5
    • 0000260241 scopus 로고
    • A parallel gradient descent method for learning in analog VLSI neural networks
    • HANSON, S.J., COWAN, J.D., and LEE, C. (Eds.): Morgan Kaufmann Publisher, San Mateo, CA
    • ALSPECTOR, J., MEIR, R., YUHAS, B., JAYAKUMAR, A., and LIPPE, D.: 'A parallel gradient descent method for learning in analog VLSI neural networks', in HANSON, S.J., COWAN, J.D., and LEE, C. (Eds.): 'Advances in neural information processing systems 5' (Morgan Kaufmann Publisher, San Mateo, CA, 1993), pp. 836-844
    • (1993) Advances in Neural Information Processing Systems 5 , pp. 836-844
    • Alspector, J.1    Meir, R.2    Yuhas, B.3    Jayakumar, A.4    Lippe, D.5
  • 6
    • 0002129667 scopus 로고
    • Nonlinear adaptive control using neural networks: Estimation with a smoothed form of simultaneous perturbation gradient approximation
    • SPALL, JC, and CRISTION, J.A.: 'Nonlinear adaptive control using neural networks: Estimation with a smoothed form of simultaneous perturbation gradient approximation', Stat. Sin., 1994, 4, pp. 1-27
    • (1994) Stat. Sin. , vol.4 , pp. 1-27
    • Spall, J.C.1    Cristion, J.A.2
  • 7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.