-
2
-
-
0009675317
-
-
J.A. Powell, L.G. Matus, M.A. Kuczmarski, C.M. Chorey, T.T. Cheng and P. Pirouz, Appl. Phys. Lett. 51 (1987) 823.
-
(1987)
Appl. Phys. Lett.
, vol.51
, pp. 823
-
-
Powell, J.A.1
Matus, L.G.2
Kuczmarski, M.A.3
Chorey, C.M.4
Cheng, T.T.5
Pirouz, P.6
-
9
-
-
0001425171
-
-
S. Hara, W.F.J. Slijkerman, J.F. van der Veen, I. Ohdomari, S. Misawa, E. Sakuma and S. Yoshida, Surf. Sci. 231 (1990) L196.
-
(1990)
Surf. Sci.
, vol.231
-
-
Hara, S.1
Slijkerman, W.F.J.2
Van Der Veen, J.F.3
Ohdomari, I.4
Misawa, S.5
Sakuma, E.6
Yoshida, S.7
-
12
-
-
84967838233
-
-
M.L. Shek, K.E. Miyano, Q.-Y. Dong, T.A. Callcott and D.L. Ederer, J. Vac. Sci. Technol. A 12 (1994) 1079.
-
(1994)
J. Vac. Sci. Technol. A
, vol.12
, pp. 1079
-
-
Shek, M.L.1
Miyano, K.E.2
Dong, Q.-Y.3
Callcott, T.A.4
Ederer, D.L.5
-
16
-
-
0042681447
-
-
note
-
We used a Pulnix TM-745 CCD interline transfer camera with a Spiricon LBA-100A. An integration time that was 4 to 6 times the frame period of 1/30 s was used. For the LEED pictures in Figs. 2 and 3, 512 × 480 pixels were used. For the intensity results in Figs. 4 and 5, the boxed area in Fig. 2a was imaged with the same pixel resolution, and the average of 2 to 16 frames was taken.
-
-
-
-
17
-
-
0042180271
-
-
note
-
The nature of the oxygenated surface species (showing O 2p) is beyond the scope of our present work. At low coverages, the oxygenated species requires thermal activation to be converted into an oxide leading to a chemically shifted Si 2p component.
-
-
-
-
19
-
-
36549103701
-
-
L. Muehlhoff, W.J. Choyke, M.J. Bozack and J.T. Yates, Jr., J. Appl. Phys. 60 (1986) 2842.
-
(1986)
J. Appl. Phys.
, vol.60
, pp. 2842
-
-
Muehlhoff, L.1
Choyke, W.J.2
Bozack, M.J.3
Yates J.T., Jr.4
-
24
-
-
0041679604
-
-
note
-
Parameters obtained for Fig. 10 curve 1a: peak 1 at -98.947 eV, peak 2 at -99.892 eV, FWHM 0.649 eV, Gaussian width 0.6 eV; peak 3 at -100.354 eV, FWHM 0.615 eV, Gaussian width 0.43 eV; peak ratio 1 : 2=0.25, 1 : 3=0.41, 2 : 3=1.68. Parameters for Fig. 10 curve 3a: peak 1 at -98.980 eV, peak 2 at -99.911 eV, FWHM 0.613 eV, Gaussian width 0.57 eV; peak 3 at -100.361 eV, FWHM 0.590 eV, Gaussian width 0.413 eV; peak ratio 1 : 2=0.30,1 : 3=0.48, 2 : 3=1.63. The energy values are averaged over 13 spectra at 130 eV and 5 spectra at 120 eV, for surfaces with peak 1 : 3 area varying from ∼0.2 to ∼0.5 seen at 130 eV.
-
-
-
-
25
-
-
5244225912
-
-
For better treatments of background removals, see: S. Tougaard, Surf. Sci. 216 (1989) 343; Jansson et al., Surf. Interface Anal. 23 (1995) 484.
-
(1989)
Surf. Sci.
, vol.216
, pp. 343
-
-
Tougaard, S.1
-
26
-
-
0029338476
-
-
For better treatments of background removals, see: S. Tougaard, Surf. Sci. 216 (1989) 343; Jansson et al., Surf. Interface Anal. 23 (1995) 484.
-
(1995)
Surf. Interface Anal.
, vol.23
, pp. 484
-
-
Jansson1
-
28
-
-
0040514381
-
-
C.M. Garner, I. Lindau, C.Y. Su, P. Pianetta and W.E. Spicer, Phys. Rev. B 19 (1979) 3944.
-
(1979)
Phys. Rev. B
, vol.19
, pp. 3944
-
-
Garner, C.M.1
Lindau, I.2
Su, C.Y.3
Pianetta, P.4
Spicer, W.E.5
-
31
-
-
0043182463
-
-
note
-
3/2 core level energy lead to too low a value for the band gap energy of 2.3 eV. Our subsequent interpretation assumes that any (downward) energy shift is uniform throughout the absorption near-edge region. A qualitatively similar situation exists for Si; see Refs. [18,28].
-
-
-
-
32
-
-
0042681444
-
-
note
-
Abbreviated descriptions of the Si 2p spectra will be given as the ratio r of the intensity at about -99 eV (S1) to that at about -100.4 eV. r=0.26 for Fig. 15 curve 2, r=0.22 for curve 3, r=0.16 for curve 4. (For comparison, r=0.28 for Fig. 10 curve 3c, r=0.25 for curve 3 and r=0.20 for curve 2 in Fig. 7, r=0.17 for Fig. 7 curve 1). The variation of the S1 peak intensity by a factor of ∼1,6, from Fig. 15 curves 4 to 2, rules against the interpretation that the dominant feature at 1.3 eV is due to S1. The partial yield of a contaminated surface with an attenuated S1 does not show a corresponding attenuation of this 1.3 eV feature.
-
-
-
-
33
-
-
0043182464
-
-
note
-
We have used a constant final-state energy of 75 eV instead of 80 eV as in Ref. [18], to avoid some very weak unidentified photoemission feature below the conduction band edge.
-
-
-
-
34
-
-
0002406733
-
-
D.J. Chadi, Phys. Rev. Lett. 43 (1979) 43; J. Vac. Sci. Technol. 16 (1979) 1290.
-
(1979)
Phys. Rev. Lett.
, vol.43
, pp. 43
-
-
Chadi, D.J.1
-
35
-
-
0018522553
-
-
D.J. Chadi, Phys. Rev. Lett. 43 (1979) 43; J. Vac. Sci. Technol. 16 (1979) 1290.
-
(1979)
J. Vac. Sci. Technol.
, vol.16
, pp. 1290
-
-
-
38
-
-
84918182707
-
-
Y.-W. Mo, R. Kariotis, B.S. Swartzentruber, M.B. Webb and M.G. Lagally, J. Vac. Sci. Technol. A 8 (1990) 201.
-
(1990)
J. Vac. Sci. Technol. A
, vol.8
, pp. 201
-
-
Mo, Y.-M.1
Kariotis, R.2
Swartzentruber, B.S.3
Webb, M.B.4
Lagally, M.G.5
-
39
-
-
84912945447
-
-
A.J. Hoeven, D. Dijkkamp, E.J. van Loenen, J.M. Lenssinck and J. Dieleman, J. Vac. Sci. Technol. A 8 (1990) 207.
-
(1990)
J. Vac. Sci. Technol. A
, vol.8
, pp. 207
-
-
Hoeven, A.J.1
Dijkkamp, D.2
Van Loenen, E.J.3
Lenssinck, J.M.4
Dieleman, J.5
-
43
-
-
0041679608
-
-
note
-
Various complications are common also in the use of Auger electron spectroscopy, which, moreover, can be problematic when there are lineshape changes, as may be expected for these surfaces.
-
-
-
-
44
-
-
3343006353
-
-
F.J. Himpsel, F.R. McFeely, A. Taleb-Ibrahimi and J.A. Yarmoff, Phys. Rev. B 38 (1988) 6084. However, the conclusion has not taken into full consideration that a reduction in plasmon losses upon oxidation would also lead to an increase in the elastic Si 2p signal.
-
(1988)
Phys. Rev. B
, vol.38
, pp. 6084
-
-
Himpsel, F.J.1
McFeely, F.R.2
Taleb-Ibrahimi, A.3
Yarmoff, J.A.4
-
45
-
-
84909818825
-
-
B.B. Pate, M. Oshima, J.A. Silberman, G. Rossi, I. Lindau and W.E. Spicer, J. Vac. Sci. Technol. A 2 (1984) 957.
-
(1984)
J. Vac. Sci. Technol. A
, vol.2
, pp. 957
-
-
Pate, B.B.1
Oshima, M.2
Silberman, J.A.3
Rossi, G.4
Lindau, I.5
Spicer, W.E.6
-
46
-
-
0043182461
-
-
note
-
Suggestions based on incident flux might be incorrect because of an unknown or a possibly coverage-structure dependent sticking coefficient.
-
-
-
|