메뉴 건너뛰기




Volumn 41, Issue 4, 1996, Pages 557-569

Learning by canonical smooth estimation - Part II: Learning and choice of model complexity

Author keywords

[No Author keywords available]

Indexed keywords

ERRORS; MATHEMATICAL MODELS; OPTIMIZATION; PROBABILITY; RANDOM PROCESSES;

EID: 0030128525     PISSN: 00189286     EISSN: None     Source Type: Journal    
DOI: 10.1109/9.489276     Document Type: Article
Times cited : (16)

References (48)
  • 1
    • 0030128623 scopus 로고    scopus 로고
    • Learning by canonical smooth estimation, Part I: Simultaneous estimation
    • K. L. Buescher and P. R. Kumar, "Learning by canonical smooth estimation, Part I: Simultaneous estimation," IEEE Trans. Automat. Contr., vol. 41, no. 4, pp. 545-556, 1996.
    • (1996) IEEE Trans. Automat. Contr. , vol.41 , Issue.4 , pp. 545-556
    • Buescher, K.L.1    Kumar, P.R.2
  • 2
    • 0001024505 scopus 로고
    • On the uniform convergence of relative frequencies of events to their probabilities
    • V. N. Vapnik and A. Chervonenkis, "On the uniform convergence of relative frequencies of events to their probabilities," Theory Probability Its Appl., vol. 16, no. 2, pp. 264-280, 1971.
    • (1971) Theory Probability Its Appl. , vol.16 , Issue.2 , pp. 264-280
    • Vapnik, V.N.1    Chervonenkis, A.2
  • 3
    • 0001954668 scopus 로고
    • Necessary and sufficient conditions for the uniform convergence of means to their expectations
    • _, "Necessary and sufficient conditions for the uniform convergence of means to their expectations," Theory Probability Its Appl., vol. 26, no. 3, pp. 532-553, 1981.
    • (1981) Theory Probability Its Appl. , vol.26 , Issue.3 , pp. 532-553
  • 5
    • 0000624821 scopus 로고
    • ∈-entropy and ∈-capacity of sets in functional spaces
    • Ser. 2
    • A. N. Kolmogorov and V. M. Tihomirov, "∈-entropy and ∈-capacity of sets in functional spaces," Amer. Math. Soc. Translations, Ser. 2, vol. 17, pp. 277-364, 1961.
    • (1961) Amer. Math. Soc. Translations , vol.17 , pp. 277-364
    • Kolmogorov, A.N.1    Tihomirov, V.M.2
  • 6
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • M. Stone, "Cross-validatory choice and assessment of statistical predictions," J. Royal Statistical Soc. B, vol. 36, pp. 111-147, 1974.
    • (1974) J. Royal Statistical Soc. B , vol.36 , pp. 111-147
    • Stone, M.1
  • 9
    • 0346776529 scopus 로고
    • Center for Intelligent Control Systems, M.I.T., Cambridge, MA, Tech. Rep. CICS-TH-298, July also Ph.D. dissertation, Dep. Electrical Engineering and Computer Science
    • _, "Problems of computational and information complexity in machine vision and learning," Center for Intelligent Control Systems, M.I.T., Cambridge, MA, Tech. Rep. CICS-TH-298, July 1991; also Ph.D. dissertation, Dep. Electrical Engineering and Computer Science.
    • (1991) Problems of Computational and Information Complexity in Machine Vision and Learning
  • 11
    • 0024053797 scopus 로고
    • Automatic pattern recognition: A study of the probability of error
    • L. Devroye, "Automatic pattern recognition: A study of the probability of error," IEEE Trans. Pattern Analysis Machine Intell., vol. 10, no. 4, pp. 530-543, 1988.
    • (1988) IEEE Trans. Pattern Analysis Machine Intell. , vol.10 , Issue.4 , pp. 530-543
    • Devroye, L.1
  • 13
    • 0001098776 scopus 로고
    • A universal prior for integers and estimation by minimum description length
    • J. Rissanen, "A universal prior for integers and estimation by minimum description length," Annals Statistics, vol. 11, no. 2, pp. 416-431, 1983.
    • (1983) Annals Statistics , vol.11 , Issue.2 , pp. 416-431
    • Rissanen, J.1
  • 14
    • 0002192516 scopus 로고
    • Decision theoretic generalizations of the PAC model for neural net and other learning applications
    • D. Haussler, "Decision theoretic generalizations of the PAC model for neural net and other learning applications," Inform. Computation, vol. 100, pp. 78-150, 1992.
    • (1992) Inform. Computation , vol.100 , pp. 78-150
    • Haussler, D.1
  • 15
    • 0024750852 scopus 로고
    • Learnability and the Vapnik-Chervonenkis dimension
    • A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth, "Learnability and the Vapnik-Chervonenkis dimension," J. ACM, vol. 36, no. 3, pp. 939-965, 1989.
    • (1989) J. ACM , vol.36 , Issue.3 , pp. 939-965
    • Blumer, A.1    Ehrenfeucht, A.2    Haussler, D.3    Warmuth, M.K.4
  • 16
    • 0000421687 scopus 로고
    • Central limit theorems for empirical measures
    • R. M. Dudley, "Central limit theorems for empirical measures," Annals Probability, vol. 6, no. 6, pp. 899-929, 1978.
    • (1978) Annals Probability , vol.6 , Issue.6 , pp. 899-929
    • Dudley, R.M.1
  • 17
    • 0000392470 scopus 로고
    • Some special Vapnik-Chervonenkis classes
    • R. S. Wenocur and R. M. Dudley, "Some special Vapnik-Chervonenkis classes," Discrete Math., vol. 33, pp. 313-318, 1981.
    • (1981) Discrete Math. , vol.33 , pp. 313-318
    • Wenocur, R.S.1    Dudley, R.M.2
  • 18
    • 0000085854 scopus 로고
    • A course on empirical processes
    • New York: Springer-Verlag
    • R. M. Dudley, "A course on empirical processes," in Lecture Notes in Mathematics, vol. 1097. New York: Springer-Verlag, 1984.
    • (1984) Lecture Notes in Mathematics , vol.1097
    • Dudley, R.M.1
  • 19
    • 0001160588 scopus 로고
    • What size net gives valid generalization?
    • E. Baum and D. Haussler, "What size net gives valid generalization?" Neural Computation, vol. 1, pp. 151-160, 1989.
    • (1989) Neural Computation , vol.1 , pp. 151-160
    • Baum, E.1    Haussler, D.2
  • 20
    • 0027205881 scopus 로고
    • Finiteness results for sigmoidal neural networks
    • Association for Computing Machinery
    • A. Macintyre and E. D. Sontag, "Finiteness results for sigmoidal neural networks," in Proc. Twenty-Fifth Ann. ACM Symp. Theory Computing, pp. 325-334, Association for Computing Machinery, 1993.
    • (1993) Proc. Twenty-Fifth Ann. ACM Symp. Theory Computing , pp. 325-334
    • Macintyre, A.1    Sontag, E.D.2
  • 21
    • 0029256399 scopus 로고    scopus 로고
    • Bounding the Vapnik-Chervonenkis dimension of concept classes parameterized by real numbers
    • Submitted
    • P. W. Goldberg and M. R. Jerrum, "Bounding the Vapnik-Chervonenkis dimension of concept classes parameterized by real numbers," Submitted to Machine Learning;
    • Machine Learning
    • Goldberg, P.W.1    Jerrum, M.R.2
  • 23
    • 0027224339 scopus 로고
    • Bounds for the computational power and learning complexity of analog neural nets
    • Association for Computing Machinery
    • W. Maass, "Bounds for the computational power and learning complexity of analog neural nets," in Proc. Twenty-Fifth Ann. ACM Symp. Theory Computing, pp. 335-344, Association for Computing Machinery, 1993.
    • (1993) Proc. Twenty-Fifth Ann. ACM Symp. Theory Computing , pp. 335-344
    • Maass, W.1
  • 26
    • 0024766393 scopus 로고
    • Generalizing the PAC model: Sample size bounds from metric dimension based uniform convergence results
    • D. Haussler, "Generalizing the PAC model: Sample size bounds from metric dimension based uniform convergence results," in 30th Annu. IEEE Symp. Foundations Computer Sci., 1989, pp. 40-45.
    • (1989) 30th Annu. IEEE Symp. Foundations Computer Sci. , pp. 40-45
    • Haussler, D.1
  • 28
    • 0001767268 scopus 로고
    • Approximation of least squares regression on nested subspaces
    • D. D. Cox, "Approximation of least squares regression on nested subspaces," Annals Statistics, vol. 16, no. 2, pp. 713-732, 1988.
    • (1988) Annals Statistics , vol.16 , Issue.2 , pp. 713-732
    • Cox, D.D.1
  • 29
    • 33646065844 scopus 로고
    • Minimization of expected risk based on empirical data
    • Utrecht, The Netherlands, VNU Science Press
    • V. N. Vapnik and A. Chervonenkis, "Minimization of expected risk based on empirical data," in Proc. First World Congr. Bernoulli Soc., vol. 2. Utrecht, The Netherlands, pp. 821-832, VNU Science Press, 1987.
    • (1987) Proc. First World Congr. Bernoulli Soc. , vol.2 , pp. 821-832
    • Vapnik, V.N.1    Chervonenkis, A.2
  • 30
    • 84913705650 scopus 로고
    • Inductive principles of the search for empirical dependences (methods based on weak convergence of probability measures)
    • San Mateo, CA: Morgan Kaufmann
    • V. N. Vapnik, "Inductive principles of the search for empirical dependences (methods based on weak convergence of probability measures)," in Computational Learning Theory: Proceedings of the Second Workshop. San Mateo, CA: Morgan Kaufmann, 1989, pp. 3-21.
    • (1989) Computational Learning Theory: Proceedings of the Second Workshop , pp. 3-21
    • Vapnik, V.N.1
  • 31
    • 0025635525 scopus 로고
    • Connectionist nonparametric regression: Multilayer feedforward networks can learn arbitrary mappings
    • H. White, "Connectionist nonparametric regression: Multilayer feedforward networks can learn arbitrary mappings," Neural Networks, vol. 3, no. 5, pp. 535-549, 1990.
    • (1990) Neural Networks , vol.3 , Issue.5 , pp. 535-549
    • White, H.1
  • 32
    • 0029307575 scopus 로고
    • Nonparametric estimation via empirical risk minimization
    • G. Lugosi and K. Zeger, "Nonparametric estimation via empirical risk minimization," IEEE Trans. Inform. Theory, vol. 41, no. 3, pp. 677-687, 1995.
    • (1995) IEEE Trans. Inform. Theory , vol.41 , Issue.3 , pp. 677-687
    • Lugosi, G.1    Zeger, K.2
  • 33
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • H. Akaike, "A new look at the statistical model identification," IEEE Trans. Automat. Contr., vol. AC-19, no. 6, pp. 716-723, 1974.
    • (1974) IEEE Trans. Automat. Contr. , vol.AC-19 , Issue.6 , pp. 716-723
    • Akaike, H.1
  • 35
    • 84904771089 scopus 로고
    • Ordered risk minimization, II
    • Sep.
    • _, "Ordered risk minimization, II," Automation Remote Contr., vol. 35, pp. 1403-1412, Sep. 1974.
    • (1974) Automation Remote Contr. , vol.35 , pp. 1403-1412
  • 36
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • G. Schwarz, "Estimating the dimension of a model," Annals Statistics, vol. 6, no. 2, pp. 461-464, 1978.
    • (1978) Annals Statistics , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 37
    • 0001462696 scopus 로고
    • L, cross-validation and generalized cross-validation: Discrete index set
    • L, cross-validation and generalized cross-validation: Discrete index set," Annals Statistics, vol. 15, no. 3, pp. 958-975, 1987.
    • (1987) Annals Statistics , vol.15 , Issue.3 , pp. 958-975
    • Li, K.C.1
  • 39
    • 0000270806 scopus 로고
    • Approximation and estimation bounds for artificial neural networks
    • San Mateo, CA: Morgan Kaufmann
    • _, "Approximation and estimation bounds for artificial neural networks," in Computational Learning Theory: Proceedings of the Fourth Annual Workshop. San Mateo, CA: Morgan Kaufmann, 1991, pp. 243-249.
    • (1991) Computational Learning Theory: Proceedings of the Fourth Annual Workshop , pp. 243-249
  • 40
    • 0026190366 scopus 로고
    • Minimum complexity density estimation
    • A. R. Barron and T. M. Cover, "Minimum complexity density estimation," IEEE Trans. Inform. Theory, vol. 37, no. 4, pp. 1034-1054, 1991.
    • (1991) IEEE Trans. Inform. Theory , vol.37 , Issue.4 , pp. 1034-1054
    • Barron, A.R.1    Cover, T.M.2
  • 42
    • 84950461478 scopus 로고
    • Estimating the error rate of a prediction rule: Improvement on cross-validation
    • June
    • B. Efron, "Estimating the error rate of a prediction rule: Improvement on cross-validation," J. Amer. Statistical Association, vol. 78, pp. 316-331, June 1983.
    • (1983) J. Amer. Statistical Association , vol.78 , pp. 316-331
    • Efron, B.1
  • 43
    • 0024082469 scopus 로고
    • Quantifying inductive bias: AI learning algorithms and Valiant's learning framework
    • D. Haussler, "Quantifying inductive bias: AI learning algorithms and Valiant's learning framework," Artificial Intelligence, vol. 36, no. 2, pp. 117-222, 1988.
    • (1988) Artificial Intelligence , vol.36 , Issue.2 , pp. 117-222
    • Haussler, D.1
  • 44
    • 33747068171 scopus 로고
    • Coordinated Science Lab. Rep. DC-144, Univ. Illinois, Urbana, IL, Tech. UILU-ENG-92-2246, Nov. also Ph.D. dissertation, Dep. Electrical and Computer Engineering
    • K. L. Buescher, "Learning and smooth simultaneous estimation of errors based on empirical data," Coordinated Science Lab. Rep. DC-144, Univ. Illinois, Urbana, IL, Tech. UILU-ENG-92-2246, Nov. 1992; also Ph.D. dissertation, Dep. Electrical and Computer Engineering.
    • (1992) Learning and Smooth Simultaneous Estimation of Errors Based on Empirical Data
    • Buescher, K.L.1
  • 46
    • 33747052508 scopus 로고
    • Evaluating the performance of a simple inductive procedure in the presence of overfilling error
    • San Mateo, CA, Morgan Kaufmann
    • A. B. Nobel, "Evaluating the performance of a simple inductive procedure in the presence of overfilling error," in Computational Learning Theory: Proceedings of the Fourth Annual Workshop. San Mateo, CA, Morgan Kaufmann, 1991, pp. 267-274.
    • (1991) Computational Learning Theory: Proceedings of the Fourth Annual Workshop , pp. 267-274
    • Nobel, A.B.1
  • 47
    • 0348037945 scopus 로고
    • Stanford University, Dep. Statistics, Stanford, CA, Tech. Rep. 81, June also Ph.D. dissertation, Dep. Electrical Engineering
    • _, "On uniform laws of averages," Stanford University, Dep. Statistics, Stanford, CA, Tech. Rep. 81, June 1992; also Ph.D. dissertation, Dep. Electrical Engineering.
    • (1992) On Uniform Laws of Averages


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.