-
1
-
-
0009424337
-
The tree structured decomposition: A new approach to robust stability analysis
-
Johns Hopkins University, Baltimore, MD
-
Barmish, B. R., J. E. Ackermann and H. Z. Hu (1989). The tree structured decomposition: a new approach to robust stability analysis. In Proc. Conf. on Information Sciences and Systems, Johns Hopkins University, Baltimore, MD, pp. 133-139.
-
(1989)
Proc. Conf. on Information Sciences and Systems
, pp. 133-139
-
-
Barmish, B.R.1
Ackermann, J.E.2
Hu, H.Z.3
-
2
-
-
0026926379
-
An extreme point result for robust stability of a diamond family of polynomials
-
Barmish, B. R., R. Tempo, C. V. Hollot and H. I. Kang (1992). An extreme point result for robust stability of a diamond family of polynomials IEEE Trans. Autom. Control, AC-37, 1460-1462.
-
(1992)
IEEE Trans. Autom. Control
, vol.AC-37
, pp. 1460-1462
-
-
Barmish, B.R.1
Tempo, R.2
Hollot, C.V.3
Kang, H.I.4
-
3
-
-
0024031896
-
Root location of an entire polytope of polynomials: It suffices to check the edges
-
Bartlett, A. C., C. V. Hollot and L. Huang (1988). Root location of an entire polytope of polynomials: it suffices to check the edges. IEEE Trans. Autom. Control, AC-33, 575-578.
-
(1988)
IEEE Trans. Autom. Control
, vol.AC-33
, pp. 575-578
-
-
Bartlett, A.C.1
Hollot, C.V.2
Huang, L.3
-
4
-
-
0027060457
-
Convexity of frequency response arcs associated with a stable polynomial
-
Chicago, IL
-
Hamann, J. C. and B. R. Barmish (1992). Convexity of frequency response arcs associated with a stable polynomial. In Proc. American Control Conf., Chicago, IL, pp. 577-582.
-
(1992)
Proc. American Control Conf.
, pp. 577-582
-
-
Hamann, J.C.1
Barmish, B.R.2
-
5
-
-
0024908779
-
When is the image of a multilinear function a polytope? A conjecture
-
Tampa, FL
-
Hollot, C. V. and Z. L. Xu (1989). When is the image of a multilinear function a polytope? A conjecture. In Proc. 28th IEEE Conf. on Decision and Control, Tampa, FL, pp. 1890-1891.
-
(1989)
Proc. 28th IEEE Conf. on Decision and Control
, pp. 1890-1891
-
-
Hollot, C.V.1
Xu, Z.L.2
-
6
-
-
0001725231
-
Asymptotoc stability of an equilibrium position of a family of systems of linear differential equations
-
Kharitonov, V. L. (1978). Asymptotoc stability of an equilibrium position of a family of systems of linear differential equations. Differentsial'nye Uravneniya, 14, 2086-2088.
-
(1978)
Differentsial'nye Uravneniya
, vol.14
, pp. 2086-2088
-
-
Kharitonov, V.L.1
-
7
-
-
0011716502
-
Robustness analysis for multilinear perturbations
-
M. Mansour, S. Balemi and W. Truöl (Eds), Birkhauser, Basel
-
Polyak, B. T. (1992). Robustness analysis for multilinear perturbations. In M. Mansour, S. Balemi and W. Truöl (Eds), Robustness of Dynamic Systems with Parametric Uncertainty, pp. 93-104. Birkhauser, Basel.
-
(1992)
Robustness of Dynamic Systems with Parametric Uncertainty
, pp. 93-104
-
-
Polyak, B.T.1
-
8
-
-
0026679938
-
Stability conditions for polytopes of polynomials
-
Rantzer, A. (1992). Stability conditions for polytopes of polynomials. IEEE Trans. Autom. Control, AC-37, 79-89.
-
(1992)
IEEE Trans. Autom. Control
, vol.AC-37
, pp. 79-89
-
-
Rantzer, A.1
-
9
-
-
0040927477
-
On the multilinear image of a cube
-
M. Mansour, S. Balemi and W. Truöl (Eds), Birkhauser, Basel
-
Tsing, N. K. and A. L. Tits (1992). On the multilinear image of a cube. In M. Mansour, S. Balemi and W. Truöl (Eds), Robustness of Dynamic Systems with Parametric Uncertainty, pp. 105-112. Birkhauser, Basel.
-
(1992)
Robustness of Dynamic Systems with Parametric Uncertainty
, pp. 105-112
-
-
Tsing, N.K.1
Tits, A.L.2
|