메뉴 건너뛰기




Volumn 9, Issue 1, 1996, Pages 27-32

Attribute-based learning

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; COMPUTATIONAL COMPLEXITY; COMPUTER HARDWARE; DATA STRUCTURES; ESTIMATION; FEEDFORWARD NEURAL NETWORKS; HEURISTIC METHODS; LOGIC PROGRAMMING; PROBABILITY; SPURIOUS SIGNAL NOISE; STATE SPACE METHODS;

EID: 0030109494     PISSN: 09217126     EISSN: None     Source Type: Journal    
DOI: 10.3233/aic-1996-9104     Document Type: Article
Times cited : (6)

References (56)
  • 1
    • 0343014638 scopus 로고
    • Applications of machine learning: Towards knowledge synthesis
    • I. Bratko, Applications of machine learning: towards knowledge synthesis. New Generation Computing 11 (1993), 343-360.
    • (1993) New Generation Computing , vol.11 , pp. 343-360
    • Bratko, I.1
  • 2
    • 0029407394 scopus 로고
    • Applications of inductive logic programming
    • November
    • I. Bratko and S. Muggleton, Applications of inductive logic programming. Communications of the ACM 38 (11) (November 1995), 65-70.
    • (1995) Communications of the ACM , vol.38 , Issue.11 , pp. 65-70
    • Bratko, I.1    Muggleton, S.2
  • 4
    • 0002117591 scopus 로고
    • A further comparison of splitting rules for decision-tree induction
    • W. Buntine and T. Niblett, A further comparison of splitting rules for decision-tree induction. Machine Learning 8 (1992), 75-85.
    • (1992) Machine Learning , vol.8 , pp. 75-85
    • Buntine, W.1    Niblett, T.2
  • 6
    • 0003006556 scopus 로고
    • Estimating probabilies: A crucial task in machine learning
    • Stockholm
    • B. Cestnik, Estimating probabilies: a crucial task in machine learning, in: Proc. European Conference on Artificial Intelligence ECAI-90, Stockholm, 1990, pp. 147-149.
    • (1990) Proc. European Conference on Artificial Intelligence , vol.ECAI-90 , pp. 147-149
    • Cestnik, B.1
  • 7
    • 85031805771 scopus 로고
    • On estimating probabilies in tree pruning
    • Porto, Portugal
    • B. Cestnik and I. Bratko, On estimating probabilies in tree pruning, in: Proc. European Working Session on Learning, EWSL-91, Porto, Portugal, 1991, pp. 138-150.
    • (1991) Proc. European Working Session on Learning , vol.EWSL-91 , pp. 138-150
    • Cestnik, B.1    Bratko, I.2
  • 8
    • 0001929348 scopus 로고
    • ASSISTANT 86: A knowledge-elication tool for sophisticated users
    • Progress in Machine Learning, I. Bratko and N. Lavrač, eds, Sigma Press, Wilmslow, England, Bled, Slovenia
    • B. Cestnik, I. Kononenko and I. Bratko, ASSISTANT 86: a knowledge-elication tool for sophisticated users, in: Progress in Machine Learning, I. Bratko and N. Lavrač, eds, Sigma Press, Wilmslow, England, Proc. European Working Session on Learning EWSL-87, Bled, Slovenia, 1987.
    • (1987) Proc. European Working Session on Learning , vol.EWSL-87
    • Cestnik, B.1    Kononenko, I.2    Bratko, I.3
  • 9
    • 85015191605 scopus 로고
    • Rule induction with CN2: Recent improvements
    • Porto, Portugal
    • P. Clark and R. Boswell, Rule induction with CN2: Recent improvements, in: Proc. European Working Session on Learning EWSL-91, Porto, Portugal, 1991, pp. 151-163.
    • (1991) Proc. European Working Session on Learning , vol.EWSL-91 , pp. 151-163
    • Clark, P.1    Boswell, R.2
  • 10
    • 34249966007 scopus 로고
    • The CN2 induction algorithm
    • P. Clark and T. Niblett, The CN2 induction algorithm, Machine Learning 3 (1989), 261-284.
    • (1989) Machine Learning , vol.3 , pp. 261-284
    • Clark, P.1    Niblett, T.2
  • 11
    • 0000825041 scopus 로고
    • Bayes and pseudo-Bayes estimates of condional probabilies their reliabily
    • Vienna, Springer-Verlag
    • J. Cussens, Bayes and pseudo-Bayes estimates of condional probabilies and their reliabily, in: Proc. European Conference on Machine Learning ECML-93, Vienna, Springer-Verlag, 1993.
    • (1993) Proc. European Conference on Machine Learning , vol.ECML-93
    • Cussens, J.1
  • 13
    • 84948951644 scopus 로고
    • Simplifying decision trees by pruning and grafting: New results
    • Crete, Greece, Springer-Verlag: Lecture Notes in AI 912
    • F. Esposito, D. Malerba and G. Semeraro, Simplifying decision trees by pruning and grafting: new results, Machine Learning: ECML-95 (Proc. ECML-95, Crete, Greece), Springer-Verlag: Lecture Notes in AI 912, 1995.
    • (1995) Machine Learning: ECML-95 Proc. ECML-95
    • Esposito, F.1    Malerba, D.2    Semeraro, G.3
  • 14
    • 0001371299 scopus 로고
    • The attribute selection problem in decision tree generation
    • San Jose, CA. MIT Press
    • U.M. Fayyad and K.B. Irani, The attribute selection problem in decision tree generation, in: Proc. AAAI-92, San Jose, CA. MIT Press, 1992.
    • (1992) Proc. AAAI-92
    • Fayyad, U.M.1    Irani, K.B.2
  • 15
    • 85152624811 scopus 로고
    • SKICAT: A machine learning system for automated cataloging of large scale surveys
    • Amherst, MA, June Morgan Kaufmann, 1993.
    • U.M. Fayyad, N. Weir and S. Djorgovski, SKICAT: a machine learning system for automated cataloging of large scale surveys, in: Proc. Tenth Int. Conf. Machine Learning, Amherst, MA, June 1993, Morgan Kaufmann, 1993.
    • (1993) Proc. Tenth Int. Conf. Machine Learning
    • Fayyad, U.M.1    Weir, N.2    Djorgovski, S.3
  • 17
    • 0030127316 scopus 로고    scopus 로고
    • Average case improvements when integrating machine learning and knowledge acquisition
    • in press
    • M. Gams, M. Drobnič and N. Karba, Average case improvements when integrating machine learning and knowledge acquisition, Applied Intelligence 6(2) (1996), in press.
    • (1996) Applied Intelligence , vol.6 , Issue.2
    • Gams, M.1    Drobnič, M.2    Karba, N.3
  • 18
    • 8344243215 scopus 로고
    • Applications of machine learning, statistics and neural networks in prediction and classification
    • Bled, Slovenia, Sept.
    • R. Henery and C. Taylor, Applications of machine learning, statistics and neural networks in prediction and classification, in: Proc. ISSEK Workshop 92, Bled, Slovenia, Sept. 1992.
    • (1992) Proc. ISSEK Workshop 92
    • Henery, R.1    Taylor, C.2
  • 20
    • 85146422424 scopus 로고
    • A practical approach to feature selection
    • Aberdeen, D. Sleeman and P. Edwards, eds, Morgan Kaufmann
    • K. Kira and L. Rendell, A practical approach to feature selection, in: Proc. Int. Conf. on Machine Learning, Aberdeen, D. Sleeman and P. Edwards, eds, Morgan Kaufmann, 1992, pp. 249-256.
    • (1992) Proc. Int. Conf. on Machine Learning , pp. 249-256
    • Kira, K.1    Rendell, L.2
  • 21
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • Montreal
    • R. Kohavi, A study of cross-validation and bootstrap for accuracy estimation and model selection, in: Proc. Int. Joint Conf. on Artificial Intelligence, Montreal, 1995, pp. 1137-1143.
    • (1995) Proc. Int. Joint Conf. on Artificial Intelligence , pp. 1137-1143
    • Kohavi, R.1
  • 22
    • 0027682531 scopus 로고
    • Inductive and Bayesian learning in medical diagnosis
    • I. Kononenko, Inductive and Bayesian learning in medical diagnosis, Applied Artificial Intelligence 7 (1993), 317-337.
    • (1993) Applied Artificial Intelligence , vol.7 , pp. 317-337
    • Kononenko, I.1
  • 23
    • 0001832882 scopus 로고
    • Estimating attributes: Analysis extensions of RELIEF
    • L. De Readt and F. Bergadano, eds, Catania, Italy, Springer-Verlag
    • I. Kononenko, Estimating attributes: analysis and extensions of RELIEF, in: Proc. European Conf. on Machine Learning, L. De Readt and F. Bergadano, eds, Catania, Italy, Springer-Verlag, 1994.
    • (1994) Proc. European Conf. on Machine Learning
    • Kononenko, I.1
  • 24
    • 85077432727 scopus 로고
    • On biases in estimating multi-valued attributes
    • Montreal, August
    • I. Kononenko, On biases in estimating multi-valued attributes, in: Proc. IJCAI-95, Montreal, August 1995.
    • (1995) Proc. IJCAI-95
    • Kononenko, I.1
  • 25
    • 0025803268 scopus 로고
    • Information based evaluation criterion for classifier's performance
    • I. Kononenko and I. Bratko, Information based evaluation criterion for classifier's performance, Machine Learning 6 (1991), 67-80.
    • (1991) Machine Learning , vol.6 , pp. 67-80
    • Kononenko, I.1    Bratko, I.2
  • 26
    • 84951625640 scopus 로고
    • Learning as optimization: Stochastic generation of multiple knowledge
    • D. Sleeman and P. Edwards, eds, San Mateo, CA, Morgan Kaufmann
    • I. Kononenko and M. Kovacič, Learning as optimization: stochastic generation of multiple knowledge, in: Machine Learning: Proc. 9th Int. Conf., D. Sleeman and P. Edwards, eds, San Mateo, CA, Morgan Kaufmann, 1992.
    • (1992) Machine Learning: Proc. 9th Int. Conf.
    • Kononenko, I.1    Kovacič, M.2
  • 28
    • 0029407395 scopus 로고
    • Applications of machine learning and rule induction
    • November
    • P. Langley and H.A. Simon, Applications of machine learning and rule induction, Communications of the ACM 38(11) (November 1995), 55-64.
    • (1995) Communications of the ACM , vol.38 , Issue.11 , pp. 55-64
    • Langley, P.1    Simon, H.A.2
  • 29
    • 0007218776 scopus 로고
    • On idiot Bayes vs proper Bayes approach in clinical diagnostic systems
    • A. Gammerman, ed., Springer-Verlag
    • H.J. Lenz, On idiot Bayes vs proper Bayes approach in clinical diagnostic systems, in: Probabilistic Reasoning and Bayesian Belief Networks, A. Gammerman, ed., Springer-Verlag, 1995.
    • (1995) Probabilistic Reasoning and Bayesian Belief Networks
    • Lenz, H.J.1
  • 30
    • 0025798330 scopus 로고
    • A distance based attribute selection measure for decision tree induction
    • R.L. De Mantaras, A distance based attribute selection measure for decision tree induction, Machine Learning 6 (1991), 81-92.
    • (1991) Machine Learning , vol.6 , pp. 81-92
    • De Mantaras, R.L.1
  • 32
    • 0003046840 scopus 로고
    • A theory and methodology of machine learning
    • R.S. Michalski, J.G. Carbonell and T.M. Mitchell, eds, Palo Alto, CA, Tioga
    • R.S. Michalski, A theory and methodology of machine learning, in: Machine Learning: An Artificial Intelligence Approach, R.S. Michalski, J.G. Carbonell and T.M. Mitchell, eds, Palo Alto, CA, Tioga, 1983.
    • (1983) Machine Learning: An Artificial Intelligence Approach
    • Michalski, R.S.1
  • 34
    • 8344253880 scopus 로고
    • Personal models of rationality
    • Special Issue on Foundations Philosophy of Probability and Statistics
    • D. Michie, Personal models of rationality, Journal of Statistical Planning and Inference, Special Issue on Foundations and Philosophy of Probability and Statistics 21 (1989).
    • (1989) Journal of Statistical Planning and Inference , vol.21
    • Michie, D.1
  • 36
    • 34249966833 scopus 로고
    • An empirical comparison of selection measures for decision tree induction
    • J. Mingers, An empirical comparison of selection measures for decision tree induction, Machine Learning 3 (1989), 319-342.
    • (1989) Machine Learning , vol.3 , pp. 319-342
    • Mingers, J.1
  • 37
    • 79952785777 scopus 로고
    • An empirical comparison of pruning methods for decision tree induction
    • J. Mingers, An empirical comparison of pruning methods for decision tree induction, Machine Learning 4 (1989), 227-243.
    • (1989) Machine Learning , vol.4 , pp. 227-243
    • Mingers, J.1
  • 38
    • 2342454348 scopus 로고
    • Combinatorial optimization in inductive concept learning
    • Amherst, Massachusetts, Morgan Kaufmann
    • D. Mladenič, Combinatorial optimization in inductive concept learning, in: Proc. 10th Intern. Conf. on Machine Learn-ing, Amherst, Massachusetts, Morgan Kaufmann, 1993, pp. 205-211.
    • (1993) Proc. 10th Intern. Conf. on Machine Learn Ing , pp. 205-211
    • Mladenič, D.1
  • 40
    • 0005801045 scopus 로고
    • Learning decision rules in noisy domains
    • Brighton, UK
    • T. Niblett and I. Bratko, Learning decision rules in noisy domains, in: Proc. Expert Systems 86, Brighton, UK, 1986.
    • (1986) Proc. Expert Systems 86
    • Niblett, T.1    Bratko, I.2
  • 41
    • 0002591462 scopus 로고
    • Lookahead feature construction for learning hard concepts
    • Amherst, Massachusetts, Morgan Kaufmann
    • H. Ragavan and L. Rendell, Lookahead feature construction for learning hard concepts, in: Proc. 10th Int. Conf. on Machine Learning, Amherst, Massachusetts, Morgan Kaufmann, 1993, pp. 252-259.
    • (1993) Proc. 10th Int. Conf. on Machine Learning , pp. 252-259
    • Ragavan, H.1    Rendell, L.2
  • 43
    • 0002442571 scopus 로고
    • Discovering rules from large collections of examples
    • D. Michie, ed., Edinburgh Universy Press
    • J.R. Quinlan, Discovering rules from large collections of examples, in: Expert Systems in the Microelectronic Age, D. Michie, ed., Edinburgh Universy Press, 1979.
    • (1979) Expert Systems in the Microelectronic Age
    • Quinlan, J.R.1
  • 44
    • 33744584654 scopus 로고
    • Induction of decision trees
    • R. Quinlan, Induction of decision trees, Machine Learning 1 (1986), 81-106.
    • (1986) Machine Learning , vol.1 , pp. 81-106
    • Quinlan, R.1
  • 45
    • 0003331332 scopus 로고
    • Learning from noisy data
    • R. Michalski, J. Carbonell and T. Mitchell, eds, Palo Alto, CA: Tioga
    • R. Quinlan, Learning from noisy data, in: Machine Learning, Vol. 2, R. Michalski, J. Carbonell and T. Mitchell, eds, Palo Alto, CA: Tioga, 1986.
    • (1986) Machine Learning , vol.2
    • Quinlan, R.1
  • 46
    • 0025888803 scopus 로고
    • Improved estimates for the accuracy of small disjuncts (Technical Note)
    • J.R Quinlan, Improved estimates for the accuracy of small disjuncts (Technical Note), Machine Learning 6(1) (1991).
    • (1991) Machine Learning , vol.6 , Issue.1
    • Quinlan, J.R.1
  • 48
    • 0002418869 scopus 로고
    • Combining instance-based model-based learning
    • Amherst, MA, Morgan Kaufmann
    • J.R. Quinlan, Combining instance-based and model-based learning, in: Proc. Tenth Int. Machine Learning Conf., Amherst, MA, Morgan Kaufmann, 1993.
    • (1993) Proc. Tenth Int. Machine Learning Conf.
    • Quinlan, J.R.1
  • 49
    • 0141877525 scopus 로고
    • Rule induction using information theory
    • G. Piatetsky-Shapiro and W. Frawley, eds, MIT Press
    • P. Smyth and R.M. Goodman, Rule induction using information theory, in: Knowledge Discovery in Databases, G. Piatetsky-Shapiro and W. Frawley, eds, MIT Press, 1990.
    • (1990) Knowledge Discovery in Databases
    • Smyth, P.1    Goodman, R.M.2
  • 52
    • 0003539213 scopus 로고
    • The Monk's problems: A performance comparison of different learning algorithms
    • Carnegie Mellon University, Pittsburgh, Pennsylvania
    • S.B. Thrun et al., The Monk's problems: a performance comparison of different learning algorithms. Technical Report TR-CMU-LS-91-197, Carnegie Mellon University, Pittsburgh, Pennsylvania, 1991.
    • (1991) Technical Report TR-CMU-LS-91-197
    • Thrun, S.B.1
  • 54
    • 0028443213 scopus 로고
    • Bias in information-based measures in decision tree induction
    • A.P. White and W.Z. Liu, Bias in information-based measures in decision tree induction, Machine Learning 15 (1994), 321-329.
    • (1994) Machine Learning , vol.15 , pp. 321-329
    • White, A.P.1    Liu, W.Z.2
  • 56
    • 0002714595 scopus 로고    scopus 로고
    • Employing linear regression in regression tree leaves
    • Vienna, Wiley
    • A. Karalič, Employing linear regression in regression tree leaves, in: Proc. ECAI-96, Vienna, Wiley, pp. 440-441.
    • Proc. ECAI-96 , pp. 440-441
    • Karalič, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.