메뉴 건너뛰기




Volumn 33, Issue 8, 1996, Pages 1175-1189

Elastic equilibrium of a medium containing a finite number of aligned spheroidal inclusions

Author keywords

[No Author keywords available]

Indexed keywords

BOUNDARY CONDITIONS; BOUNDARY VALUE PROBLEMS; CONVERGENCE OF NUMERICAL METHODS; INCLUSIONS; INTERFACES (MATERIALS); LINEAR ALGEBRA; LOADS (FORCES); NUMERICAL METHODS; STRESS CONCENTRATION;

EID: 0030108166     PISSN: 00207683     EISSN: None     Source Type: Journal    
DOI: 10.1016/0020-7683(95)00068-2     Document Type: Article
Times cited : (32)

References (12)
  • 1
    • 0017913676 scopus 로고
    • The solution of the equations of linear elasticity for an infinite region containing two spherical inclusions
    • Chen, H. S. and Acrivos, A. (1978). The solution of the equations of linear elasticity for an infinite region containing two spherical inclusions. Int. J. Solids Structures 14, 331-348.
    • (1978) Int. J. Solids Structures , vol.14 , pp. 331-348
    • Chen, H.S.1    Acrivos, A.2
  • 2
    • 0001085508 scopus 로고
    • The elastic field outside an ellipsoidal inclusion
    • Eshelby, J. D. (1959). The elastic field outside an ellipsoidal inclusion. Proc. R. Soc. Lond. A252, 561-569.
    • (1959) Proc. R. Soc. Lond. , vol.A252 , pp. 561-569
    • Eshelby, J.D.1
  • 3
    • 0042482538 scopus 로고
    • The solution of static boundary-value problems for the elastic body constrained by spherical surfaces
    • in Ukrainian
    • Golovchan, V. T. (1974). The solution of static boundary-value problems for the elastic body constrained by spherical surfaces. Dokl. An Ukr. SSR N1, 61-64 (in Ukrainian).
    • (1974) Dokl. An Ukr. SSR , vol.N1 , pp. 61-64
    • Golovchan, V.T.1
  • 4
    • 0027188580 scopus 로고
    • Double-inclusion model and overall moduli of multiphase composites
    • Hori, M. and Nemat-Nasser, S. (1993). Double-inclusion model and overall moduli of multiphase composites. Mech. Mater. 14, 189-206.
    • (1993) Mech. Mater. , vol.14 , pp. 189-206
    • Hori, M.1    Nemat-Nasser, S.2
  • 5
    • 21844505412 scopus 로고
    • Addition theorems for the partial vectorial solutions of Lame's equation in a spheroidal basis
    • in press
    • Kushch, V. I. (1995). Addition theorems for the partial vectorial solutions of Lame's equation in a spheroidal basis. Int. Appl. Mech. 31 (in press).
    • (1995) Int. Appl. Mech. , vol.31
    • Kushch, V.I.1
  • 6
    • 0016599962 scopus 로고
    • Two ellipsoidal inhomogeneities by the equivalent inclusion method
    • Moschovidis, Z. A. and Mura, T. (1975). Two ellipsoidal inhomogeneities by the equivalent inclusion method. J. Appl. Mech. 42, 847-852.
    • (1975) J. Appl. Mech. , vol.42 , pp. 847-852
    • Moschovidis, Z.A.1    Mura, T.2
  • 7
    • 0042211856 scopus 로고
    • Deformation of the elastic spheroid
    • in Russian
    • Podilchuk, Yu. N. (1967). Deformation of the elastic spheroid. Prikladnaya Mehanika 3(12), 34-42 (in Russian).
    • (1967) Prikladnaya Mehanika , vol.3 , Issue.12 , pp. 34-42
    • Podilchuk, Yu.N.1
  • 8
    • 0025839591 scopus 로고
    • On the problem of linear elasticity for an infinite region containing a finite number of non-intersecting spherical inhomogeneities
    • Rodin, G. J. and Hwang, Y.-L. (1991). On the problem of linear elasticity for an infinite region containing a finite number of non-intersecting spherical inhomogeneities. Int. J. Solids Structures 27, 145-159.
    • (1991) Int. J. Solids Structures , vol.27 , pp. 145-159
    • Rodin, G.J.1    Hwang, Y.-L.2
  • 9
    • 0007284020 scopus 로고
    • The effect of two rigid spherical inclusions on the stresses in an infinite elastic solid
    • Shelley, J. F. and Yu, Y. Y. (1966). The effect of two rigid spherical inclusions on the stresses in an infinite elastic solid. J. Appl. Mech. 33, 993.
    • (1966) J. Appl. Mech. , vol.33 , pp. 993
    • Shelley, J.F.1    Yu, Y.Y.2
  • 10
    • 0043214133 scopus 로고
    • General forms of solutions of elasticity theory equations for the single-connected and multiply-connected regions expressed through harmonical functions
    • in Russian
    • Slobodyanskyj, M. G. (1954). General forms of solutions of elasticity theory equations for the single-connected and multiply-connected regions expressed through harmonical functions. Prikladnaya Matematika i Mehanika 18, 55-74 (in Russian).
    • (1954) Prikladnaya Matematika i Mehanika , vol.18 , pp. 55-74
    • Slobodyanskyj, M.G.1
  • 11
    • 85137168651 scopus 로고
    • On the axisymmetrical problem of the theory of elasticity for an infinite region containing two spherical cavities
    • Sternberg, E. and Sadowsky, M. A. (1952). On the axisymmetrical problem of the theory of elasticity for an infinite region containing two spherical cavities. J. Appl. Mech. 19, 19-27.
    • (1952) J. Appl. Mech. , vol.19 , pp. 19-27
    • Sternberg, E.1    Sadowsky, M.A.2
  • 12
    • 0016995793 scopus 로고
    • On the asymmetric problem of elasticity theory for an infinite elastic solid containing some spherical cavities
    • Tsuchida, E., Nakahara, J. and Kodama, M. (1976). On the asymmetric problem of elasticity theory for an infinite elastic solid containing some spherical cavities. Bull. JSME 19, 993-998.
    • (1976) Bull. JSME , vol.19 , pp. 993-998
    • Tsuchida, E.1    Nakahara, J.2    Kodama, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.