메뉴 건너뛰기




Volumn 9, Issue 1, 1996, Pages 21-26

Genetic algorithms in machine learning

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL COMPLEXITY; COMPUTATIONAL LINGUISTICS; COMPUTER HARDWARE; COMPUTER HARDWARE DESCRIPTION LANGUAGES; FUZZY SETS; KNOWLEDGE BASED SYSTEMS; LEARNING SYSTEMS; LOGIC PROGRAMMING; NEURAL NETWORKS; OPTIMIZATION; PROBABILITY;

EID: 0030107941     PISSN: 09217126     EISSN: None     Source Type: Journal    
DOI: 10.3233/aic-1996-9103     Document Type: Article
Times cited : (7)

References (48)
  • 1
    • 0002089210 scopus 로고
    • A new interpretation of schema notation that overturns the binary encoding constraint
    • Fairfax, VA
    • Antonisse, J. (1989), A new interpretation of schema notation that overturns the binary encoding constraint, in: Proc. 3rd Int. Conf. an Genetic Algorithms, Fairfax, VA, pp. 86-91.
    • (1989) Proc. 3rd Int. Conf. An Genetic Algorithms , pp. 86-91
    • Antonisse, J.1
  • 2
    • 0007642227 scopus 로고
    • Learning noise tolerant classification procedures by integrating inductive learning and genetic algorithms
    • Harpers Ferry, WV, 1991
    • Bala, J., De Jong, K.A. and Pachowicz, P. (1991), Learning noise tolerant classification procedures by integrating inductive learning and genetic algorithms, in: Proc. First International Workshop on Multistrategy Learning, Harpers Ferry, WV, 1991, pp. 316-323.
    • (1991) Proc. First International Workshop on Multistrategy Learning , pp. 316-323
    • Bala, J.1    De Jong, K.A.2    Pachowicz, P.3
  • 3
    • 0002890519 scopus 로고
    • Structure and performance of fine-grained parallelism in genetic search
    • Urbana-Champain, IL
    • Baluja, S. (1993), Structure and performance of fine-grained parallelism in genetic search, in: Proc. 5th Int. Conf. on Genetic Algorithms, Urbana-Champain, IL, pp. 155-162.
    • (1993) Proc. 5th Int. Conf. on Genetic Algorithms , pp. 155-162
    • Baluja, S.1
  • 8
    • 0003056220 scopus 로고
    • Parametric connectivity: Training of constrained networks using genetic algorithms
    • Fairfax, VA
    • Caudell, T.P. and Dolan, C.P. (1989), Parametric connectivity: training of constrained networks using genetic algorithms, in: Proc. 3rd Int. Conf. on Genetic Algorithms, Fairfax, VA, pp. 370-374.
    • (1989) Proc. 3rd Int. Conf. on Genetic Algorithms , pp. 370-374
    • Caudell, T.P.1    Dolan, C.P.2
  • 9
    • 0003871635 scopus 로고
    • Doctoral Dissertation, Dept. of Computer and Communication Sciences, University of Michigan, Ann Arbor, MI
    • De Jong, K.A. (1975), Analysis of the behaviour of a class of genetic adaptive systems. Doctoral Dissertation, Dept. of Computer and Communication Sciences, University of Michigan, Ann Arbor, MI.
    • (1975) Analysis of the Behaviour of a Class of Genetic Adaptive Systems
    • De Jong, K.A.1
  • 10
    • 0027696338 scopus 로고
    • Using genetic algorithms for concept learning
    • De Jong, K.A., Spears, W.M. and Gordon, F.D. (1993), Using genetic algorithms for concept learning, Machine Learning 13, 161-188.
    • (1993) Machine Learning , vol.13 , pp. 161-188
    • De Jong, K.A.1    Spears, W.M.2    Gordon, F.D.3
  • 11
    • 0002284602 scopus 로고
    • An investigation of niches species formation in genetic function optimization
    • Fairfax, VA
    • Deb, K. and Goldberg, D. (1989), An investigation of niches and species formation in genetic function optimization, in: Proc. 3rd Int. Conf. on Genetic Algorithms, Fairfax, VA, pp. 42-50.
    • (1989) Proc. 3rd Int. Conf. on Genetic Algorithms , pp. 42-50
    • Deb, K.1    Goldberg, D.2
  • 12
    • 0010751086 scopus 로고
    • Alecsys: A parallel laboratory for learning classifer systems
    • San Diego, CA
    • Dorigo, M. and Sirtori, E. (1991), Alecsys: a parallel laboratory for learning classifer systems, in: Proc. 4rh Int. Conf, on Genetic Algorithms, San Diego, CA, pp. 296-302.
    • (1991) Proc. 4rh Int. Conf, on Genetic Algorithms , pp. 296-302
    • Dorigo, M.1    Sirtori, E.2
  • 13
    • 0002406910 scopus 로고
    • Fuzzy network synthesis with genetic algorithms
    • Urbana-Champain, IL
    • Feldman, D.S. (1993), Fuzzy network synthesis with genetic algorithms, in: Proc. 5th Int. Conf. on Genetic Algorithms, Urbana-Champain, IL, pp. 312-317.
    • (1993) Proc. 5th Int. Conf. on Genetic Algorithms , pp. 312-317
    • Feldman, D.S.1
  • 14
    • 0006314661 scopus 로고
    • An interactive genetic algorithm for controller parameter optimisation
    • Innsbrouk, Austria
    • Filipic, B. (1992), An interactive genetic algorithm for controller parameter optimisation, in: Proc. Int. Conf. on Artificial Neural Nets and Genetic Algorithms, Innsbrouk, Austria, pp. 458-462.
    • (1992) Proc. Int. Conf. on Artificial Neural Nets and Genetic Algorithms , pp. 458-462
    • Filipic, B.1
  • 16
    • 0003151909 scopus 로고
    • REGAL: An integrated system for learning relations using genetic algorithms
    • Harpers Ferry, VA
    • Giordana, A. and Saitta, L. (1993), REGAL: an integrated system for learning relations using genetic algorithms in: Proc. 2nd International Workshop on Multistrategy Learning, Harpers Ferry, VA, pp. 234-249.
    • (1993) Proc. 2nd International Workshop on Multistrategy Learning , pp. 234-249
    • Giordana, A.1    Saitta, L.2
  • 17
    • 33747447385 scopus 로고
    • Learning disjunctive concepts by means of genetic algorithms
    • New Brunswick, NJ
    • Giordana, A. and Saitta, L. (1994), Learning disjunctive concepts by means of genetic algorithms, in: Proc. Int. Conf. on Machine Learning, New Brunswick, NJ, pp. 96-104.
    • (1994) Proc. Int. Conf. on Machine Learning , pp. 96-104
    • Giordana, A.1    Saitta, L.2
  • 20
    • 0001903624 scopus 로고
    • Genetic algorithms with sharing for multimodal function optimization
    • Cambridge, MA
    • Goldberg, D.E. and Richardson, J. (1987), Genetic algorithms with sharing for multimodal function optimization, in: Proc. 2nd Int. Conf. on Genetic Algorithms, Cambridge, MA, pp. 41-49.
    • (1987) Proc. 2nd Int. Conf. on Genetic Algorithms , pp. 41-49
    • Goldberg, D.E.1    Richardson, J.2
  • 21
    • 0027696043 scopus 로고
    • Competition-based induction of decision models from examples
    • Greene, D.P. and Smith, S.F. (1993), Competition-based induction of decision models from examples, Machine Learning 13, 229-258.
    • (1993) Machine Learning , vol.13 , pp. 229-258
    • Greene, D.P.1    Smith, S.F.2
  • 22
    • 0000488536 scopus 로고
    • Learning sequential decision rules using simulation models and competitions
    • Grefenstette, J.J., Ramsey, C.L. and Schultz, A.C. (1990), Learning sequential decision rules using simulation models and competitions, Machine Learning 5, 355-381.
    • (1990) Machine Learning , vol.5 , pp. 355-381
    • Grefenstette, J.J.1    Ramsey, C.L.2    Schultz, A.C.3
  • 23
    • 0022559425 scopus 로고
    • Optimization of control parameters for genetic algorithms
    • Grefenstette, J. (1986), Optimization of control parameters for genetic algorithms, IEEE Trans. on SMC 16, 122-128.
    • (1986) IEEE Trans. on SMC , vol.16 , pp. 122-128
    • Grefenstette, J.1
  • 24
    • 0007803390 scopus 로고
    • Genetic synthesis of modular neural networks
    • Urbana-Champain, IL
    • Gruau, F. (1993), Genetic synthesis of modular neural networks, in: Proc. 5th Int. Conf. on Genetic Algorithms, Urbana-Champain, IL, pp. 318-325.
    • (1993) Proc. 5th Int. Conf. on Genetic Algorithms , pp. 318-325
    • Gruau, F.1
  • 26
    • 0000746883 scopus 로고
    • Escaping brittleness: The possibilities of general purpose learning algorithms applied to parallel rule-based systems
    • R. Michalski, J. Carbonell and T. Mitchell, eds, Morgan Kaufmann, Los Altos, CA
    • Holland, J.H. (1986), Escaping brittleness: the possibilities of general purpose learning algorithms applied to parallel rule-based systems, in: Machine Learning: An AI Approach, R. Michalski, J. Carbonell and T. Mitchell, eds, Vol. II, Morgan Kaufmann, Los Altos, CA, pp. 593-623.
    • (1986) Machine Learning: An AI Approach , vol.2 , pp. 593-623
    • Holland, J.H.1
  • 27
    • 0027696178 scopus 로고
    • A knowledge intensive genetic algorithm for supervised learning
    • Janikow, C.Z. (1993), A knowledge intensive genetic algorithm for supervised learning. Machine Learning 13, 198-228.
    • (1993) Machine Learning , vol.13 , pp. 198-228
    • Janikow, C.Z.1
  • 30
    • 0028336556 scopus 로고
    • Genetic evolution of the topology weight distribution of neural networks
    • Maniezzo, V. (1994), Genetic evolution of the topology and weight distribution of neural networks, IEEE Trans. on Neural Networks.
    • (1994) IEEE Trans. on Neural Networks
    • Maniezzo, V.1
  • 31
    • 33747436067 scopus 로고
    • Using genetic algorithm to learn disjunctive rules from examples
    • Austin, Texas
    • McCallum, R.A. and Spackman, K.A. (1990), Using genetic algorithm to learn disjunctive rules from examples, in: Proc. Int. Conf. on Machine Learning, Austin, Texas, pp. 149-152.
    • (1990) Proc. Int. Conf. on Machine Learning , pp. 149-152
    • McCallum, R.A.1    Spackman, K.A.2
  • 33
    • 0003046840 scopus 로고
    • A theory and methodology of inductive learning
    • R. Michalski, J. Carbonell and T. Mitchell, eds. Morgan Kaufmann, Los Altos, CA
    • Michalski, R. (1983), A theory and methodology of inductive learning, in: Machine Learning: An AI Approach, R. Michalski, J. Carbonell and T. Mitchell, eds. Vol. I, Morgan Kaufmann, Los Altos, CA, pp. 83-134.
    • (1983) Machine Learning: An AI Approach , vol.1 , pp. 83-134
    • Michalski, R.1
  • 34
    • 85005299854 scopus 로고
    • The multi-purpose incremental learning system AQ15 and its testing application to three medical domains
    • Philadelphia, PA
    • Michalski, R., Mozetic, I., Hong, J. and Lavrac, N. (1986), The multi-purpose incremental learning system AQ15 and its testing application to three medical domains, in: Proc. 5th National Conference on Artificial Intelligence, Philadelphia, PA, pp. 1041-1045.
    • (1986) Proc. 5th National Conference on Artificial Intelligence , pp. 1041-1045
    • Michalski, R.1    Mozetic, I.2    Hong, J.3    Lavrac, N.4
  • 36
    • 0000640432 scopus 로고
    • Inductive logic programming
    • Muggleton, S. (1991), Inductive logic programming, New Generation Computing 8, 295-318.
    • (1991) New Generation Computing , vol.8 , pp. 295-318
    • Muggleton, S.1
  • 37
    • 0003166651 scopus 로고
    • A parallel genetic algorithm for concept learning
    • Pittsburgh, PA
    • Neri, F. and Giordana, A. (1995), A parallel genetic algorithm for concept learning, in: Proc. 6th Int. Conf. on Genetic Algorithms, Pittsburgh, PA, pp. 436-443.
    • (1995) Proc. 6th Int. Conf. on Genetic Algorithms , pp. 436-443
    • Neri, F.1    Giordana, A.2
  • 38
    • 0347761845 scopus 로고
    • Analysis of genetic algorithms evolution under pure selection
    • Pittsburgh, PA
    • Neri, F. and Saitta, L. (1995), Analysis of genetic algorithms evolution under pure selection, in: Proc. 6th Int. Conf. on Genetic Algorithms, Pittsburgh, PA, pp. 32-41.
    • (1995) Proc. 6th Int. Conf. on Genetic Algorithms , pp. 32-41
    • Neri, F.1    Saitta, L.2
  • 39
    • 0002895332 scopus 로고
    • A new approach to fuzzy classifier systems
    • Urbana-Champain, IL
    • Parodi, A. and Bonelli, P. (1993), A new approach to fuzzy classifier systems, in: Proc. 5th Int. Conf. on Genetic Algorithms, Urbana-Champain, IL, pp. 223-230.
    • (1993) Proc. 5th Int. Conf. on Genetic Algorithms , pp. 223-230
    • Parodi, A.1    Bonelli, P.2
  • 40
    • 0002259743 scopus 로고
    • A theoretical investigation of a parallel genetic algorithm
    • Fairfax, VA
    • Pettey, C.C. and Leuze, M.R. (1989), A theoretical investigation of a parallel genetic algorithm, in: Proc. 3rd Int. Conf. on Genetic Algorithms, Fairfax, VA, pp. 398-405.
    • (1989) Proc. 3rd Int. Conf. on Genetic Algorithms , pp. 398-405
    • Pettey, C.C.1    Leuze, M.R.2
  • 41
    • 8344230228 scopus 로고
    • Training Kohonen feature maps in different topologies: An analysis using genetic algorithms
    • Urbana-Champain, IL
    • Polani, D. and Uthmann, T. (1993), Training Kohonen feature maps in different topologies: an analysis using genetic algorithms, in: Proc. 5th Int. Conf. on Genetic Algorithms, Urbana-Champain, IL, pp. 326-333.
    • (1993) Proc. 5th Int. Conf. on Genetic Algorithms , pp. 326-333
    • Polani, D.1    Uthmann, T.2
  • 42
    • 0020938473 scopus 로고
    • Flexible learning of problem solving heuristics through adaptive search
    • Karlsruhe, Germany
    • Smith, S. (1983), Flexible learning of problem solving heuristics through adaptive search, in: Proc. 8th Int. Joint Conf. on Artificial Intelligence, Karlsruhe, Germany, pp. 422-425.
    • (1983) Proc. 8th Int. Joint Conf. on Artificial Intelligence , pp. 422-425
    • Smith, S.1
  • 43
    • 0004609430 scopus 로고
    • Improving the performance of rule induction system using genetic algorithms
    • Harpers Ferry, VA
    • Vafaie, H. and De Jong, K.A. (1991), Improving the performance of rule induction system using genetic algorithms, in: Proc. First International Workshop on Multistrategy Learning, Harpers Ferry, VA, pp. 305-315.
    • (1991) Proc. First International Workshop on Multistrategy Learning , pp. 305-315
    • Vafaie, H.1    De Jong, K.A.2
  • 44
    • 84971641220 scopus 로고
    • SIA: A supervised inductive algorithm with genetic search for learning attribute based concepts
    • Vienna, Austria
    • Venturini, G. (1993), SIA: a supervised inductive algorithm with genetic search for learning attribute based concepts, in: Proc. European Conference on Machine Learning, Vienna, Austria, pp. 280-296.
    • (1993) Proc. European Conference on Machine Learning , pp. 280-296
    • Venturini, G.1
  • 45
    • 0001376805 scopus 로고
    • Optimising neural networks using faster, more accurate genetic search
    • Fairfax, VA
    • Whitley, D. and Hanson, T. (1989), Optimising neural networks using faster, more accurate genetic search, in: Proc. 3rd Int. Conf. on Genetic Algorithms, Fairfax, VA, pp. 391-397.
    • (1989) Proc. 3rd Int. Conf. on Genetic Algorithms , pp. 391-397
    • Whitley, D.1    Hanson, T.2
  • 46
    • 0027701513 scopus 로고
    • Genetic reinforcement learning for neurocontrol problems
    • Whitley, D., Dominic, S., Das, R. and Anderson, C.W. (1993), Genetic reinforcement learning for neurocontrol problems, Machine Learning 13, 259-284.
    • (1993) Machine Learning , vol.13 , pp. 259-284
    • Whitley, D.1    Dominic, S.2    Das, R.3    Anderson, C.W.4
  • 47
    • 0000874753 scopus 로고
    • Classifier systems the animat problem
    • Wilson, S. (1987), Classifier systems and the animat problem, Machine Learning 2, 199-228.
    • (1987) Machine Learning , vol.2 , pp. 199-228
    • Wilson, S.1
  • 48
    • 0029394041 scopus 로고
    • Inducing logic programs with genetic algorithms: The genetic logic programming system
    • Wong, M.L. and Leung, K.S. (1995), Inducing logic programs with genetic algorithms: the genetic logic programming system, IEEE Expert 10 (5), 68-76.
    • (1995) IEEE Expert , vol.10 , Issue.5 , pp. 68-76
    • Wong, M.L.1    Leung, K.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.