-
2
-
-
0025446557
-
Counter-example to 'Clockwise nature of Nyquist locus of stable transfer functions'
-
A. C. Bartlett, "Counter-example to 'Clockwise nature of Nyquist locus of stable transfer functions,'" Int. J. Contr., vol. 51, no. 6, pp. 1479-1483, 1990.
-
(1990)
Int. J. Contr.
, vol.51
, Issue.6
, pp. 1479-1483
-
-
Bartlett, A.C.1
-
3
-
-
33747026708
-
Convexity of a frequency response arc associated with a stable quasi-polynomial
-
Lake Buena Vista, FL
-
N. Cohen and J. Kogan, "Convexity of a frequency response arc associated with a stable quasi-polynomial," in Proc. 33rd IEEE Conf. Decision Contr., Lake Buena Vista, FL, 1994, pp. 2661-2662.
-
(1994)
Proc. 33rd IEEE Conf. Decision Contr.
, pp. 2661-2662
-
-
Cohen, N.1
Kogan, J.2
-
4
-
-
33746962202
-
Comments on 'Convexity of frequency response arcs associated with a stable polynomial
-
K. Gu, "Comments on 'Convexity of frequency response arcs associated with a stable polynomial,'" IEEE Trans. Automat. Contr., vol. 39, no. 11, pp. 2262-2265, 1994.
-
(1994)
IEEE Trans. Automat. Contr.
, vol.39
, Issue.11
, pp. 2262-2265
-
-
Gu, K.1
-
5
-
-
0027610797
-
Convexity of frequency response arcs associated with a stable polynomial
-
J. C. Hamann and B. R. Barmish, "Convexity of frequency response arcs associated with a stable polynomial," IEEE Trans. Automat. Contr., vol. 38, no. 6, pp. 904-915, 1993.
-
(1993)
IEEE Trans. Automat. Contr.
, vol.38
, Issue.6
, pp. 904-915
-
-
Hamann, J.C.1
Barmish, B.R.2
-
6
-
-
0029639349
-
On exponential stability of linear systems and Hurwitz stability of characteristic quasi-polynomials
-
to appear
-
J. Hocherman, J. Kogan, and E. Zeheb, "On exponential stability of linear systems and Hurwitz stability of characteristic quasi-polynomials," Syst. Contr. Lett., to appear.
-
Syst. Contr. Lett.
-
-
Hocherman, J.1
Kogan, J.2
Zeheb, E.3
-
7
-
-
0024648831
-
Clockwise nature of Nyquist locus of stable transfer function
-
I. Horowitz and S. Ben-Adam, "Clockwise nature of Nyquist locus of stable transfer function," Int. J. Contr., vol. 49, pp. 1433-1436, 1989.
-
(1989)
Int. J. Contr.
, vol.49
, pp. 1433-1436
-
-
Horowitz, I.1
Ben-Adam, S.2
-
8
-
-
0028194027
-
On stability of weighted diamond of real polynomials
-
V. L. Kharitonov and R. Tempo, "On stability of weighted diamond of real polynomials," Syst. Contr. Lett., vol. 22, no. 1, pp. 5-8, 1994.
-
(1994)
Syst. Contr. Lett.
, vol.22
, Issue.1
, pp. 5-8
-
-
Kharitonov, V.L.1
Tempo, R.2
-
9
-
-
0028727242
-
Robust stability of time-delay systems
-
V. L. Kharitonov and A. P. Zhabko, "Robust stability of time-delay systems," IEEE Trans. Automat. Contr., vol. 39, no. 12, pp. 2388-2397, 1994.
-
(1994)
IEEE Trans. Automat. Contr.
, vol.39
, Issue.12
, pp. 2388-2397
-
-
Kharitonov, V.L.1
Zhabko, A.P.2
-
11
-
-
0003281219
-
Distribution of zeros of entire functions
-
Providence, RI: Amer. Math. Soc.
-
B. J. Levin, "Distribution of zeros of entire functions," in Translations of Mathematical Monographs, vol. 5. Providence, RI: Amer. Math. Soc., 1964.
-
(1964)
Translations of Mathematical Monographs
, vol.5
-
-
Levin, B.J.1
-
12
-
-
0003363945
-
Geometry of Polynomials
-
Providence, RI: Amer. Math. Soc.
-
M. Marden, "Geometry of Polynomials," in Mathematical Surveys, no. 3. Providence, RI: Amer. Math. Soc., 1966.
-
(1966)
Mathematical Surveys, No. 3
-
-
Marden, M.1
-
14
-
-
84987198630
-
Kharitonov's weak theorem holds if and only if the stability region and its reciprocal are convex
-
A. Rantzer, "Kharitonov's weak theorem holds if and only if the stability region and its reciprocal are convex," Int. J. Nonlinear Robust Contr., vol. 3, pp. 55-62, 1993.
-
(1993)
Int. J. Nonlinear Robust Contr.
, vol.3
, pp. 55-62
-
-
Rantzer, A.1
-
17
-
-
0026679003
-
Clockwise property of the Nyquist plot with implications for absolute stability
-
A. Tesi, A. Vicino, and G. Zappa, "Clockwise property of the Nyquist plot with implications for absolute stability," Automatica, vol. 28, no. 1, pp. 71-80, 1992.
-
(1992)
Automatica
, vol.28
, Issue.1
, pp. 71-80
-
-
Tesi, A.1
Vicino, A.2
Zappa, G.3
-
18
-
-
0026400091
-
p-robust stability of continuous linear systems
-
p-robust stability of continuous linear systems," IEEE Trans. Automat. Contr., vol. 36, no. 12, pp. 1464-1469, 1991.
-
(1991)
IEEE Trans. Automat. Contr.
, vol.36
, Issue.12
, pp. 1464-1469
-
-
Tsypkin, Y.Z.1
Polyak, B.T.2
|