-
1
-
-
0029182694
-
-
Los Angeles, 6 to 11 August 1995 Association for Computing Machinery, New York
-
Y. Lee, D. Terzopoulos, K. Waters, in SIGGRAPH Proceedings, Los Angeles, 6 to 11 August 1995 (Association for Computing Machinery, New York, 1995), pp. 55-66.
-
(1995)
SIGGRAPH Proceedings
, pp. 55-66
-
-
Lee, Y.1
Terzopoulos, D.2
Waters, K.3
-
6
-
-
0027708501
-
-
Washington, DC, 11 to 15 July 1993 American Association for Artificial Intelligence Press, Menlo Park, CA
-
H. Murase and S. Nayar, in Proceedings of the Eleventh National Conference on Artificial Intelligence. Washington, DC, 11 to 15 July 1993 (American Association for Artificial Intelligence Press, Menlo Park, CA, 1993), pp. 836-843.
-
(1993)
Proceedings of the Eleventh National Conference on Artificial Intelligence
, pp. 836-843
-
-
Murase, H.1
Nayar, S.2
-
8
-
-
8944263452
-
-
Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
-
T. Poggio, in Cold Spring Harbor Symposia on Quantitative Biology (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1990), pp. 899-910; T. Breuel, A.I. Technical Report 1374 (Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, 1992); A. Pentland, B. Moghaddam, T. Starner, in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Seattle, WA, 21 to 23 June 1994 (IEEE Computer Society Press. Los Alamitos, CA, 1994), pp. 84-91; B. A. Golomb, D. T. Lawrence, T. J. Sejnowski, in Advances in Neural Information Processing Systems 3, R, Lippmann, J. Moody, D. Touretzky, Eds. (Morgan Kaufmann, San Mateo, CA, 1991), pp. 572-577.
-
(1990)
Cold Spring Harbor Symposia on Quantitative Biology
, pp. 899-910
-
-
Poggio, T.1
-
9
-
-
8944233981
-
-
Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge
-
T. Poggio, in Cold Spring Harbor Symposia on Quantitative Biology (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1990), pp. 899-910; T. Breuel, A.I. Technical Report 1374 (Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, 1992); A. Pentland, B. Moghaddam, T. Starner, in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Seattle, WA, 21 to 23 June 1994 (IEEE Computer Society Press. Los Alamitos, CA, 1994), pp. 84-91; B. A. Golomb, D. T. Lawrence, T. J. Sejnowski, in Advances in Neural Information Processing Systems 3, R, Lippmann, J. Moody, D. Touretzky, Eds. (Morgan Kaufmann, San Mateo, CA, 1991), pp. 572-577.
-
(1992)
A.I. Technical Report 1374
-
-
Breuel, T.1
-
10
-
-
0027928121
-
-
Seattle, WA, 21 to 23 June 1994 IEEE Computer Society Press. Los Alamitos, CA
-
T. Poggio, in Cold Spring Harbor Symposia on Quantitative Biology (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1990), pp. 899-910; T. Breuel, A.I. Technical Report 1374 (Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, 1992); A. Pentland, B. Moghaddam, T. Starner, in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Seattle, WA, 21 to 23 June 1994 (IEEE Computer Society Press. Los Alamitos, CA, 1994), pp. 84-91; B. A. Golomb, D. T. Lawrence, T. J. Sejnowski, in Advances in Neural Information Processing Systems 3, R, Lippmann, J. Moody, D. Touretzky, Eds. (Morgan Kaufmann, San Mateo, CA, 1991), pp. 572-577.
-
(1994)
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
, pp. 84-91
-
-
Pentland, A.1
Moghaddam, B.2
Starner, T.3
-
11
-
-
0000871726
-
-
R, Lippmann, J. Moody, D. Touretzky, Eds. Morgan Kaufmann, San Mateo, CA
-
T. Poggio, in Cold Spring Harbor Symposia on Quantitative Biology (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1990), pp. 899-910; T. Breuel, A.I. Technical Report 1374 (Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, 1992); A. Pentland, B. Moghaddam, T. Starner, in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Seattle, WA, 21 to 23 June 1994 (IEEE Computer Society Press. Los Alamitos, CA, 1994), pp. 84-91; B. A. Golomb, D. T. Lawrence, T. J. Sejnowski, in Advances in Neural Information Processing Systems 3, R, Lippmann, J. Moody, D. Touretzky, Eds. (Morgan Kaufmann, San Mateo, CA, 1991), pp. 572-577.
-
(1991)
Advances in Neural Information Processing Systems 3
, pp. 572-577
-
-
Golomb, B.A.1
Lawrence, D.T.2
Sejnowski, T.J.3
-
12
-
-
85017551228
-
-
The Hague, 30 August to 3 September 1992 IEEE Computer Society Press, Los Alamitos, CA
-
Techniques based on the assumption of a linear vector space include those of Murase and Nayar (6), who used eigenfunctions of object images; Turk and Pentland [(22), see also S. Akamatsu, T. Sasaki, H. Fukamachi, N. Masui, Y. Suenaga, International Conference on Pattern Recognition, The Hague, 30 August to 3 September 1992 (IEEE Computer Society Press, Los Alamitos, CA, 1992), pp. 217-220], who used eigenfunctions in the space of face images; and Sung and Poggio (28), who used the Mahalanobis distance in their face detection system [see also B. Moghaddam and A. Pentland, in (14), pp. 786-793; U. Fayyad, N. Weir, S. Djorgovski, in Proceedings of the Tenth International Conference on Machine Learning, University of Massachusetts, Amherst, 27 to 29 June 1993 (Morgan Kaufmann, San Mateo, CA, 1993), pp. 112-119].
-
(1992)
International Conference on Pattern Recognition
, pp. 217-220
-
-
Akamatsu, S.1
Sasaki, T.2
Fukamachi, H.3
Masui, N.4
Suenaga, Y.5
-
13
-
-
85035166021
-
-
in (14), pp. 786-793
-
Techniques based on the assumption of a linear vector space include those of Murase and Nayar (6), who used eigenfunctions of object images; Turk and Pentland [(22), see also S. Akamatsu, T. Sasaki, H. Fukamachi, N. Masui, Y. Suenaga, International Conference on Pattern Recognition, The Hague, 30 August to 3 September 1992 (IEEE Computer Society Press, Los Alamitos, CA, 1992), pp. 217-220], who used eigenfunctions in the space of face images; and Sung and Poggio (28), who used the Mahalanobis distance in their face detection system [see also B. Moghaddam and A. Pentland, in (14), pp. 786-793; U. Fayyad, N. Weir, S. Djorgovski, in Proceedings of the Tenth International Conference on Machine Learning, University of Massachusetts, Amherst, 27 to 29 June 1993 (Morgan Kaufmann, San Mateo, CA, 1993), pp. 112-119].
-
-
-
Moghaddam, B.1
Pentland, A.2
-
14
-
-
85152624811
-
-
University of Massachusetts, Amherst, 27 to 29 June 1993 Morgan Kaufmann, San Mateo, CA
-
Techniques based on the assumption of a linear vector space include those of Murase and Nayar (6), who used eigenfunctions of object images; Turk and Pentland [(22), see also S. Akamatsu, T. Sasaki, H. Fukamachi, N. Masui, Y. Suenaga, International Conference on Pattern Recognition, The Hague, 30 August to 3 September 1992 (IEEE Computer Society Press, Los Alamitos, CA, 1992), pp. 217-220], who used eigenfunctions in the space of face images; and Sung and Poggio (28), who used the Mahalanobis distance in their face detection system [see also B. Moghaddam and A. Pentland, in (14), pp. 786-793; U. Fayyad, N. Weir, S. Djorgovski, in Proceedings of the Tenth International Conference on Machine Learning, University of Massachusetts, Amherst, 27 to 29 June 1993 (Morgan Kaufmann, San Mateo, CA, 1993), pp. 112-119].
-
(1993)
Proceedings of the Tenth International Conference on Machine Learning
, pp. 112-119
-
-
Fayyad, U.1
Weir, N.2
Djorgovski, S.3
-
15
-
-
85035167651
-
-
note
-
A collection of objects V is a vector space if (i) for all u,v in V, au + bv is in V with a,b real numbers and (ii) there is a zero vector 0 such that for all u in V, 0u = 0 and u + 0 = u. Other axioms omitted here ensure that addition and multiplication behave as they should.
-
-
-
-
16
-
-
85035162526
-
-
note
-
Measurements such as area, perimeter, and statistical estimates of color, contrast, and other properties of images are all global features used in the past. Sparse local features can also be used; there are obvious trade-offs between feature complexity and the difficulty of the correspondence step.
-
-
-
-
17
-
-
85035161300
-
-
note
-
In many object recognition tasks, correspondence is not needed over the full image. Correspondence that is limited to image patches that correspond to object components is easier and yields more robust recognition and detection schemes. In this article, discussions of full image correspondence apply to components as well.
-
-
-
-
18
-
-
85035169379
-
-
note
-
2 is the number of pixels in the image (because of the three color values per pixel). Of course, it may be possible to define a sparser set of relevant feature points in the image. The term shape vector refers to the 2D shape (not 3D) relative to the reference image.
-
-
-
-
19
-
-
0029215135
-
-
Cambridge, MA, 20 to 23 June 1995 IEEE Computer Society Press, Los Alamitos, CA
-
M. Jones and T. Poggio, in Proceedings of the Fifth International Conference on Computer Vision, Cambridge, MA, 20 to 23 June 1995 (IEEE Computer Society Press, Los Alamitos, CA, 1995), pp. 531-536.
-
(1995)
Proceedings of the Fifth International Conference on Computer Vision
, pp. 531-536
-
-
Jones, M.1
Poggio, T.2
-
20
-
-
84991199954
-
-
Orlando, FL, 24 to 29 July 1994 Association for Computing Machinery, New York
-
A. Blake and M. Isard, in SIGGRAPH Proceedings, Orlando, FL, 24 to 29 July 1994 (Association for Computing Machinery, New York, 1994), pp. 185-192.
-
(1994)
SIGGRAPH Proceedings
, pp. 185-192
-
-
Blake, A.1
Isard, M.2
-
21
-
-
0027306394
-
-
Berlin, 11 to 14 May 1993 IEEE Computer Society Press, Los Alamitos, CA
-
T. F. Cootes, C. J. Taylor, A. Lanitis, D. H. Cooper, J. Graham, in Proceedings of the Fourth International Conference on Computer Vision, Berlin, 11 to 14 May 1993 (IEEE Computer Society Press, Los Alamitos, CA, 1993), pp. 242-246.
-
(1993)
Proceedings of the Fourth International Conference on Computer Vision
, pp. 242-246
-
-
Cootes, T.F.1
Taylor, C.J.2
Lanitis, A.3
Cooper, D.H.4
Graham, J.5
-
22
-
-
8944262459
-
-
Istituto per la Ricerca Scientifica e Tecnologica, Povo, Italy
-
T. Poggio, Technical Report 9005-03 (Istituto per la Ricerca Scientifica e Tecnologica, Povo, Italy, 1990),
-
(1990)
Technical Report 9005-03
-
-
Poggio, T.1
-
23
-
-
0001880185
-
-
University of Glasgow, UK, 24 to 26 September 1991 Springer-Verlag, London
-
I. Craw and P. Cameron, in Proceedings British Machine Vision Conference, University of Glasgow, UK, 24 to 26 September 1991 (Springer-Verlag, London, 1991), pp. 367-370.
-
(1991)
Proceedings British Machine Vision Conference
, pp. 367-370
-
-
Craw, I.1
Cameron, P.2
-
28
-
-
8944234466
-
-
Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge
-
T. Vetter and T. Poggio, A.I. Memo 1531 (Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, 1995).
-
(1995)
A.I. Memo 1531
-
-
Vetter, T.1
Poggio, T.2
-
30
-
-
85035167817
-
-
note
-
In this framework, principal components analysis is just one of the several tools provided by the mathematical structure of a vector space, which is the actual key property here.
-
-
-
-
32
-
-
8944262942
-
-
Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge
-
T. Poggio and R. Brunelli, A.I. Memo 1354 (Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, 1992).
-
(1992)
A.I. Memo 1354
-
-
Poggio, T.1
Brunelli, R.2
-
33
-
-
0001150595
-
-
Monterey, CA, 13 to 16 November 1994 Morgan Kaufmann, San Mateo, CA
-
K. K. Sung and T. Poggio, in Proceedings of the Image Understanding Workshop, Monterey, CA, 13 to 16 November 1994 (Morgan Kaufmann, San Mateo, CA, 1994), pp. 843-850.
-
(1994)
Proceedings of the Image Understanding Workshop
, pp. 843-850
-
-
Sung, K.K.1
Poggio, T.2
-
34
-
-
0029220876
-
-
Carnegie Mellon University, Pittsburgh, PA
-
H.A. Rowley, S. Baluja, T. Kanade, Technical Report CMU-CS-95-158 (Carnegie Mellon University, Pittsburgh, PA, 1995); H. Murase and S. K. Nayar, Int. J. Comput. Vision 14, 5 (1995).
-
(1995)
Technical Report CMU-CS-95-158
-
-
Rowley, H.A.1
Baluja, S.2
Kanade, T.3
-
35
-
-
0029220876
-
-
H.A. Rowley, S. Baluja, T. Kanade, Technical Report CMU-CS-95-158 (Carnegie Mellon University, Pittsburgh, PA, 1995); H. Murase and S. K. Nayar, Int. J. Comput. Vision 14, 5 (1995).
-
(1995)
Int. J. Comput. Vision
, vol.14
, pp. 5
-
-
Murase, H.1
Nayar, S.K.2
-
36
-
-
0002702986
-
-
Leeds, UK, 22 to 24 September 1992 Springer-Verlag, London
-
T. F. Cootes and C. J. Taylor, in Proceedings British Machine Vision Conference, Leeds, UK, 22 to 24 September 1992 (Springer-Verlag, London, 1992), pp. 266-275.
-
(1992)
Proceedings British Machine Vision Conference
, pp. 266-275
-
-
Cootes, T.F.1
Taylor, C.J.2
-
37
-
-
8944238581
-
-
Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, 1992; thesis, Massachusetts Institute of Technology
-
A. Shashua, A.I. Technical Report 1401 (Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, 1992); thesis, Massachusetts Institute of Technology (1992).
-
(1992)
A.I. Technical Report 1401
-
-
Shashua, A.1
-
38
-
-
8944249410
-
-
Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge
-
T. Poggio and T. Vetter, A.I Memo 1347 (Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, 1992).
-
(1992)
A.I Memo 1347
-
-
Poggio, T.1
Vetter, T.2
-
40
-
-
8944223122
-
-
Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge
-
D. Beymer, A.I. Memo 1537 (Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, 1995).
-
(1995)
A.I. Memo 1537
-
-
Beymer, D.1
-
43
-
-
85035168766
-
-
Institut National de Recherche en Informatique et en Automatique, France
-
S. Laveau and O. Faugeras, Technical Report 2205 (Institut National de Recherche en Informatique et en Automatique, France, 1994); S. Avidan and A, Shashua, Technical Report CIS-9602 (Technion, Haifa, Israel, 1996); T. Evgeniou, thesis. Massachusetts Institute of Technology (1996).
-
(1994)
Technical Report 2205
-
-
Laveau, S.1
Faugeras, O.2
-
44
-
-
85035166991
-
-
Technion, Haifa, Israel
-
S. Laveau and O. Faugeras, Technical Report 2205 (Institut National de Recherche en Informatique et en Automatique, France, 1994); S. Avidan and A, Shashua, Technical Report CIS-9602 (Technion, Haifa, Israel, 1996); T. Evgeniou, thesis. Massachusetts Institute of Technology (1996).
-
(1996)
Technical Report CIS-9602
-
-
Avidan, S.1
Shashua, A.2
-
45
-
-
85035169121
-
-
thesis. Massachusetts Institute of Technology (1996)
-
S. Laveau and O. Faugeras, Technical Report 2205 (Institut National de Recherche en Informatique et en Automatique, France, 1994); S. Avidan and A, Shashua, Technical Report CIS-9602 (Technion, Haifa, Israel, 1996); T. Evgeniou, thesis. Massachusetts Institute of Technology (1996).
-
-
-
Evgeniou, T.1
-
46
-
-
8944237601
-
-
Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge
-
D. Beymer, A. Shashua, T. Poggio, A.I. Memo 1431 (Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, 1993); T. Ezzat, thesis, Massachusetts Institute of Technology (1996); S. Lines, thesis. Massachusetts Institute of Technology (1996).
-
(1993)
A.I. Memo 1431
-
-
Beymer, D.1
Shashua, A.2
Poggio, T.3
-
47
-
-
85035171123
-
-
thesis, Massachusetts Institute of Technology (1996)
-
D. Beymer, A. Shashua, T. Poggio, A.I. Memo 1431 (Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, 1993); T. Ezzat, thesis, Massachusetts Institute of Technology (1996); S. Lines, thesis. Massachusetts Institute of Technology (1996).
-
-
-
Ezzat, T.1
-
48
-
-
85035169942
-
-
thesis. Massachusetts Institute of Technology (1996)
-
D. Beymer, A. Shashua, T. Poggio, A.I. Memo 1431 (Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, 1993); T. Ezzat, thesis, Massachusetts Institute of Technology (1996); S. Lines, thesis. Massachusetts Institute of Technology (1996).
-
-
-
Lines, S.1
-
49
-
-
0029428809
-
-
Cambridge, MA, 24 June 1995 IEEE Computer Society Press, Los Alamitos, CA
-
S. Seitz and C. Dyer, in Proc. IEEE Workshop on the Representation of Visual Scenes, Cambridge, MA, 24 June 1995 (IEEE Computer Society Press, Los Alamitos, CA, 1995), pp. 18-25; S. Chen and L. Williams, in SIGGRAPH Proceedings, Anaheim, CA, 1 to 6 August 1993 (Association for Computing Machinery, New York, 1993), pp. 279-288; L. McMillan and G. Bishop, in (1), pp. 39-46.
-
(1995)
Proc. IEEE Workshop on the Representation of Visual Scenes
, pp. 18-25
-
-
Seitz, S.1
Dyer, C.2
-
50
-
-
84922337647
-
-
Anaheim, CA, 1 to 6 August 1993 Association for Computing Machinery, New York
-
S. Seitz and C. Dyer, in Proc. IEEE Workshop on the Representation of Visual Scenes, Cambridge, MA, 24 June 1995 (IEEE Computer Society Press, Los Alamitos, CA, 1995), pp. 18-25; S. Chen and L. Williams, in SIGGRAPH Proceedings, Anaheim, CA, 1 to 6 August 1993 (Association for Computing Machinery, New York, 1993), pp. 279-288; L. McMillan and G. Bishop, in (1), pp. 39-46.
-
(1993)
SIGGRAPH Proceedings
, pp. 279-288
-
-
Chen, S.1
Williams, L.2
-
51
-
-
0029428809
-
-
in (1), pp. 39-46
-
S. Seitz and C. Dyer, in Proc. IEEE Workshop on the Representation of Visual Scenes, Cambridge, MA, 24 June 1995 (IEEE Computer Society Press, Los Alamitos, CA, 1995), pp. 18-25; S. Chen and L. Williams, in SIGGRAPH Proceedings, Anaheim, CA, 1 to 6 August 1993 (Association for Computing Machinery, New York, 1993), pp. 279-288; L. McMillan and G. Bishop, in (1), pp. 39-46.
-
-
-
McMillan, L.1
Bishop, G.2
-
53
-
-
0025056697
-
-
Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge
-
T. Poggio and F. Girosi, A.I. Memo 1140 (Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, 1989). See also T. Poggio and F. Girosi, Science 247, 978 (1990).
-
(1989)
A.I. Memo 1140
-
-
Poggio, T.1
Girosi, F.2
-
54
-
-
0025056697
-
-
T. Poggio and F. Girosi, A.I. Memo 1140 (Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, 1989). See also T. Poggio and F. Girosi, Science 247, 978 (1990).
-
(1990)
Science
, vol.247
, pp. 978
-
-
Poggio, T.1
Girosi, F.2
-
57
-
-
85035167935
-
-
note
-
2 criterion is used for training (42).
-
-
-
-
58
-
-
85006841501
-
-
Santa Margherita Ligure, Italy, 19 to 22 May 1992 Springer-Verlag, Berlin
-
J. R. Bergen, P. Anandan, K. J. Hanna, R. Hingorani, in Proceedings of the Second European Conference on Computer Vision, Santa Margherita Ligure, Italy, 19 to 22 May 1992 (Springer-Verlag, Berlin, 1992), pp. 237-252. See also B. Lucas and T. Kanade, in Proceedings IJCAI. Vancouver, British Columbia, 24 to 28 August 1981 (American Association for Artificial Intelligence, Menlo Park, CA, 1981), pp. 674-679.
-
(1992)
Proceedings of the Second European Conference on Computer Vision
, pp. 237-252
-
-
Bergen, J.R.1
Anandan, P.2
Hanna, K.J.3
Hingorani, R.4
-
59
-
-
0019647180
-
-
Vancouver, British Columbia, 24 to 28 August 1981 American Association for Artificial Intelligence, Menlo Park, CA
-
J. R. Bergen, P. Anandan, K. J. Hanna, R. Hingorani, in Proceedings of the Second European Conference on Computer Vision, Santa Margherita Ligure, Italy, 19 to 22 May 1992 (Springer-Verlag, Berlin, 1992), pp. 237-252. See also B. Lucas and T. Kanade, in Proceedings IJCAI. Vancouver, British Columbia, 24 to 28 August 1981 (American Association for Artificial Intelligence, Menlo Park, CA, 1981), pp. 674-679.
-
(1981)
Proceedings IJCAI
, pp. 674-679
-
-
Lucas, B.1
Kanade, T.2
-
60
-
-
0029193249
-
-
Pittsburgh, PA, 5 to 9 August 1995 IEEE Computer Society Press, Los Alamitos, CA
-
Dense correspondence can be computed at video rate by machines such as the Carnegie Mellon University video-rate stereo machine [T. Kanade, H. Kano, S. Kimura, A. Yoshida, K. Oda, in Proceedings of the International Conference on Intelligent Robotics and Systems, Pittsburgh, PA, 5 to 9 August 1995 (IEEE Computer Society Press, Los Alamitos, CA, 1995), pp. 95-100] or the David Sarnoff Vision Front End [ P. Anandan, P. Burt, J. Pearson, in Proceedings of the Image Understanding Workshop, Palm Springs, CA, 12 to 15 February 1996 (Morgan Kaufmann, San Mateo, CA. 1996)]
-
(1995)
Proceedings of the International Conference on Intelligent Robotics and Systems
, pp. 95-100
-
-
Kanade, T.1
Kano, H.2
Kimura, S.3
Yoshida, A.4
Oda, K.5
-
61
-
-
85035161352
-
-
Palm Springs, CA, 12 to 15 February 1996 Morgan Kaufmann, San Mateo, CA.
-
Dense correspondence can be computed at video rate by machines such as the Carnegie Mellon University video-rate stereo machine [T. Kanade, H. Kano, S. Kimura, A. Yoshida, K. Oda, in Proceedings of the International Conference on Intelligent Robotics and Systems, Pittsburgh, PA, 5 to 9 August 1995 (IEEE Computer Society Press, Los Alamitos, CA, 1995), pp. 95-100] or the David Sarnoff Vision Front End [ P. Anandan, P. Burt, J. Pearson, in Proceedings of the Image Understanding Workshop, Palm Springs, CA, 12 to 15 February 1996 (Morgan Kaufmann, San Mateo, CA. 1996)]
-
(1996)
Proceedings of the Image Understanding Workshop
-
-
Anandan, P.1
Burt, P.2
Pearson, J.3
-
63
-
-
85035161062
-
-
note
-
i are computed by solving the linear system of Eqs. 1 over the training data.
-
-
-
-
64
-
-
0004220095
-
-
IEEE Computer Society Press, Los Alamitos, CA
-
G. Wolberg, Digital Image Warping (IEEE Computer Society Press, Los Alamitos, CA, 1990).
-
(1990)
Digital Image Warping
-
-
Wolberg, G.1
-
65
-
-
85035160057
-
-
thesis, Massachusetts Institute of Technology See also the Cartoon-o-Matic Web page
-
S. Librande, thesis, Massachusetts Institute of Technology (1992). See also the Cartoon-o-Matic Web page, http://www.nfx.com.
-
(1992)
-
-
Librande, S.1
-
66
-
-
0004024737
-
-
Cambridge Research Laboratory, Digital Equipment Corporation, Cambridge, MA
-
A different approach to rendering a face with a focus on the text-to-speech component can be found in K. Waters and T. M. Levergood. Technical Report CRL 93/4 (Cambridge Research Laboratory, Digital Equipment Corporation, Cambridge, MA, 1993).
-
(1993)
Technical Report CRL 93/4
-
-
Waters, K.1
Levergood, T.M.2
-
68
-
-
0019634266
-
-
k's of Eqs. 4 to 8. Given a novel image, the parameters that correspond to the best fit of the model are estimated by minimizing an error measure between the novel image and the flexible model after rendering it as an image. For instance, parameters can be found that minimize the function equation presented
-
(1981)
IEEE Trans. Pattern Anal. Machine Intell.
, vol.3
, pp. 708
-
-
Burr, D.J.1
-
69
-
-
0015567825
-
-
k's of Eqs. 4 to 8. Given a novel image, the parameters that correspond to the best fit of the model are estimated by minimizing an error measure between the novel image and the flexible model after rendering it as an image. For instance, parameters can be found that minimize the function equation presented
-
(1973)
IEEE Trans. Comput.
, vol.C-22
, pp. 67
-
-
Fischler, M.A.1
Eschlager, R.A.2
-
70
-
-
0019634266
-
-
Springer-Verlag, New York
-
k's of Eqs. 4 to 8. Given a novel image, the parameters that correspond to the best fit of the model are estimated by minimizing an error measure between the novel image and the flexible model after rendering it as an image. For instance, parameters can be found that minimize the function equation presented
-
(1991)
Hands: A Pattern Theoretic Study of Biological Shapes
-
-
Grenander, U.1
Chow, Y.2
Keenan, D.M.3
-
71
-
-
0019634266
-
-
J. Moody, S. Hanson, R. Liopmann, Eds. Morgan Kaufmann, San Mateo, CA
-
k's of Eqs. 4 to 8. Given a novel image, the parameters that correspond to the best fit of the model are estimated by minimizing an error measure between the novel image and the flexible model after rendering it as an image. For instance, parameters can be found that minimize the function equation presented
-
(1992)
Advances in Neural Information Processing Systems 4
, pp. 512-519
-
-
Hinton, G.E.1
Williams, C.K.I.2
Revow, M.D.3
-
72
-
-
0019634266
-
-
k's of Eqs. 4 to 8. Given a novel image, the parameters that correspond to the best fit of the model are estimated by minimizing an error measure between the novel image and the flexible model after rendering it as an image. For instance, parameters can be found that minimize the function equation presented
-
(1990)
Neural Comput.
, vol.2
, pp. 1
-
-
Yuille, A.1
-
73
-
-
0019634266
-
-
thesis, Harvard University (1995)
-
k's of Eqs. 4 to 8. Given a novel image, the parameters that correspond to the best fit of the model are estimated by minimizing an error measure between the novel image and the flexible model after rendering it as an image. For instance, parameters can be found that minimize the function equation presented
-
-
-
Hallinan, P.W.1
-
75
-
-
0019634266
-
-
in preparation
-
k's of Eqs. 4 to 8. Given a novel image, the parameters that correspond to the best fit of the model are estimated by minimizing an error measure between the novel image and the flexible model after rendering it as an image. For instance, parameters can be found that minimize the function equation presented
-
-
-
Jones, M.1
Poggio, T.2
-
77
-
-
0022417790
-
-
Other matching techniques for object recognition are closely related to optical flow algorithms, even if the connection is not always made explicit. For instance, the functional minimized in the technique of von der Marlsburg and co-workers (33) is closely related to the regularization functional [T. Poggio, V. Torre, C. Koch, Nature 317, 314 (1985)] used in many optical flow algorithms.
-
(1985)
Nature
, vol.317
, pp. 314
-
-
Poggio, T.1
Torre, V.2
Koch, C.3
-
78
-
-
85035165608
-
-
thesis, Massachusetts Institute of Technology (1993)
-
Optical flow techniques work between images with sufficiently low disparities. When correspondence is desired between images that are quite different, other techniques are required [P. Lipson, thesis, Massachusetts Institute of Technology (1993); I. Bachelder, thesis, Massachusetts Institute of Technology (1991); A. Witkin, D. Terzopoulos, M. Kass, Int. J. Comput. Vision 1, 133 (1987)]. We do not imply that dense correspondence is always needed in vision and graphics tasks. Symbolic techniques should be used in general to guide the low-level correspondence algorithms we have used in this work.
-
-
-
Lipson, P.1
-
79
-
-
85035171262
-
-
thesis, Massachusetts Institute of Technology (1991)
-
Optical flow techniques work between images with sufficiently low disparities. When correspondence is desired between images that are quite different, other techniques are required [P. Lipson, thesis, Massachusetts Institute of Technology (1993); I. Bachelder, thesis, Massachusetts Institute of Technology (1991); A. Witkin, D. Terzopoulos, M. Kass, Int. J. Comput. Vision 1, 133 (1987)]. We do not imply that dense correspondence is always needed in vision and graphics tasks. Symbolic techniques should be used in general to guide the low-level correspondence algorithms we have used in this work.
-
-
-
Bachelder, I.1
-
80
-
-
0000157769
-
-
Optical flow techniques work between images with sufficiently low disparities. When correspondence is desired between images that are quite different, other techniques are required [P. Lipson, thesis, Massachusetts Institute of Technology (1993); I. Bachelder, thesis, Massachusetts Institute of Technology (1991); A. Witkin, D. Terzopoulos, M. Kass, Int. J. Comput. Vision 1, 133 (1987)]. We do not imply that dense correspondence is always needed in vision and graphics tasks. Symbolic techniques should be used in general to guide the low-level correspondence algorithms we have used in this work.
-
(1987)
Int. J. Comput. Vision
, vol.1
, pp. 133
-
-
Witkin, A.1
Terzopoulos, D.2
Kass, M.3
-
81
-
-
0001834673
-
-
This procedure is similar to training a network with input-output pairs of prototypical views representing each prototype in the initial and in the desired pose. Then, for a new input image, the network synthesizes a virtual view in the desired pose. If the network is trained with pairs of prototype images as inputs (represented as 2D shape vectors) and their 3D shape as output, it will effectively compute 3D shape for novel images of the same class [see (23, 32) and compare the approach of J. Atick, P. Griffin, N. Reidlich, Network: Comput. Neural Syst. 7, 1 (1996)]. The linear class assumption induces a linear combination of the 2D shape vectors but not of the corresponding texture vectors, not even for Lambertian reflectance and uniform albedo ( A. Yuille, personal communication).
-
(1996)
Network: Comput. Neural Syst.
, vol.7
, pp. 1
-
-
Atick, J.1
Griffin, P.2
Reidlich, N.3
-
82
-
-
85035161375
-
-
personal communication
-
This procedure is similar to training a network with input-output pairs of prototypical views representing each prototype in the initial and in the desired pose. Then, for a new input image, the network synthesizes a virtual view in the desired pose. If the network is trained with pairs of prototype images as inputs (represented as 2D shape vectors) and their 3D shape as output, it will effectively compute 3D shape for novel images of the same class [see (23, 32) and compare the approach of J. Atick, P. Griffin, N. Reidlich, Network: Comput. Neural Syst. 7, 1 (1996)]. The linear class assumption induces a linear combination of the 2D shape vectors but not of the corresponding texture vectors, not even for Lambertian reflectance and uniform albedo ( A. Yuille, personal communication).
-
-
-
Yuille, A.1
-
83
-
-
85035159576
-
-
note
-
An approach in the same spirit was used earlier by Pomerleau to increase the number of training examples in his system that learns to steer a vehicle from images of the road (7).
-
-
-
-
84
-
-
85035169224
-
-
note
-
It is not surprising that a small set of corresponding images constitutes a powerful representation for recognition and graphics, because complete 3D structure can be recovered from a small number of views in correspondence (three orthographic and two perspective views are sufficient).
-
-
-
-
86
-
-
0026536967
-
-
H. H. Bülthoff and S. Edelman, Proc. Natl. Acad. Sci. U.S.A. 89, 60 (1992); N. Logothetis, J. Pauls, T. Poggio, Curr. Biol. 5, 552 (1995).
-
(1992)
Proc. Natl. Acad. Sci. U.S.A.
, vol.89
, pp. 60
-
-
Bülthoff, H.H.1
Edelman, S.2
-
87
-
-
0029294644
-
-
H. H. Bülthoff and S. Edelman, Proc. Natl. Acad. Sci. U.S.A. 89, 60 (1992); N. Logothetis, J. Pauls, T. Poggio, Curr. Biol. 5, 552 (1995).
-
(1995)
Curr. Biol.
, vol.5
, pp. 552
-
-
Logothetis, N.1
Pauls, J.2
Poggio, T.3
-
88
-
-
85035166435
-
-
note
-
We thank H. Bülthoff, F. Girosi, P. Dayan, M. Jordan, T. Vetter, T. Sejnowski, D. Glaser, A. Shashua, E. Grimson, M. Jones, R. Romano, and especially S. Ullman, C. Tomasi, C. Koch, A. Blake, D. Terzopoulos, and T. Kanade for reading the manuscript and for many insightful and constructive comments. Sponsored by grants from the Office of Naval Research and the Advanced Research Projects Agency under contracts N00014-93-1-0385 and N00014-92-J-1879, Support for CBCL is provided in part by grants from NSF under contract ASC-9217041, by the Multidisciplinary University Research Initiative under contract N00014-95-1-0600, and by Siemens, Daimler-Benz, Eastman Kodak, and ATR. T.P. is supported by the Uncas and Helen Whitaker Chair at Whitaker College, Massachusetts Institute of Technology. D.B. was supported in part by a Howard Hughes Doctoral Fellowship from the Hughes Aircraft Company.
-
-
-
|