-
3
-
-
0026795363
-
-
(a) Armstrong, J. D., III; Hartner, F. W., Jr.; DeCamp, A. E.; Volante, R. P.; Shinkai, I. Tetrahedron Lett. 1992, 33, 6599. See also:
-
(1992)
Tetrahedron Lett.
, vol.33
, pp. 6599
-
-
Armstrong III, J.D.1
Hartner Jr., F.W.2
DeCamp, A.E.3
Volante, R.P.4
Shinkai, I.5
-
4
-
-
0026084964
-
-
(b) DeCamp, A. E.; Kawaguchi, A. T.; Volante. R. P.; Shinkai, I. Tetrahedron Lett. 1991, 32, 1867.
-
(1991)
Tetrahedron Lett.
, vol.32
, pp. 1867
-
-
DeCamp, A.E.1
Kawaguchi, A.T.2
Volante, R.P.3
Shinkai, I.4
-
5
-
-
0028198510
-
-
(c) Reetz, M. R.; Karin, R.; Griebenow, N. Tetrahedron Lett. 1994, 35, 1969.
-
(1994)
Tetrahedron Lett.
, vol.35
, pp. 1969
-
-
Reetz, M.R.1
Karin, R.2
Griebenow, N.3
-
8
-
-
0026089323
-
-
(f) Kano, S.; Yokomatsu, T.; Shibuya, S. Tetrahedron Lett. 1991, 32, 233.
-
(1991)
Tetrahedron Lett.
, vol.32
, pp. 233
-
-
Kano, S.1
Yokomatsu, T.2
Shibuya, S.3
-
9
-
-
10544243908
-
-
note
-
The first step in the sequence is a non-stereoselective aldol between 7 and formaldehyde.
-
-
-
-
10
-
-
0344803789
-
-
and references cited therein
-
(a) Sidduri, A.; Rozema, M. J.; Knochel, P. J. Org. Chem. 1993, 58, 2694 and references cited therein,
-
(1993)
J. Org. Chem.
, vol.58
, pp. 2694
-
-
Sidduri, A.1
Rozema, M.J.2
Knochel, P.3
-
11
-
-
4243489506
-
-
(b) Knochel, P.; Singer, R. D. Chem. Rev. 1993, 93, 2117. For an early example of the use of a zinc carbenoid with a lithium enolate, see:
-
(1993)
Chem. Rev.
, vol.93
, pp. 2117
-
-
Knochel, P.1
Singer, R.D.2
-
13
-
-
10544247912
-
-
note
-
2Zn → 7 + 2EtI. For preparation of 8, see ref 4a and Supporting Information.
-
-
-
-
14
-
-
10544247043
-
-
note
-
-1, respectively) are observed with the disappearance of the lithium enolate absorbances.
-
-
-
-
15
-
-
84989502117
-
-
and references sited therein
-
The assignment of a carbon-bound (as opposed to oxygen-bound) zincate species for 11 is based upon low-temperature NMR observations. Enolate zincate 11 is drawn as a monomer for clarity. Prior stuctural studies on zinc enolates suggest 11 may exist in aggregate forms through dative Zn-C or Zn-O bonding. For related examples, see: (a) Bolm, C.; Müller, J.; Zehnder, M.; Neuburger, M. A. Chem. Eur. J. 1995, 1, 312 and references sited therein. (b) Fabicao, R. M.; Pajerski, A. D.; Richey, G. H., Jr.; J. Am. Chem. Soc. 1991, 113, 6680.
-
(1995)
Chem. Eur. J.
, vol.1
, pp. 312
-
-
Bolm, C.1
Müller, J.2
Zehnder, M.3
Neuburger, M.A.4
-
16
-
-
0000459397
-
-
The assignment of a carbon-bound (as opposed to oxygen-bound) zincate species for 11 is based upon low-temperature NMR observations. Enolate zincate 11 is drawn as a monomer for clarity. Prior stuctural studies on zinc enolates suggest 11 may exist in aggregate forms through dative Zn-C or Zn-O bonding. For related examples, see: (a) Bolm, C.; Müller, J.; Zehnder, M.; Neuburger, M. A. Chem. Eur. J. 1995, 1, 312 and references sited therein. (b) Fabicao, R. M.; Pajerski, A. D.; Richey, G. H., Jr.; J. Am. Chem. Soc. 1991, 113, 6680.
-
(1991)
J. Am. Chem. Soc.
, vol.113
, pp. 6680
-
-
Fabicao, R.M.1
Pajerski, A.D.2
Richey Jr., G.H.3
-
17
-
-
33751384995
-
-
The involvement of higher order zincates in 1.2-migrations has been previously implicated: Harada, T.; Katsuhira, T.; Hattori, K.; Oku, A. J. Org. Chem. 1993, 58, 2958.
-
(1993)
J. Org. Chem.
, vol.58
, pp. 2958
-
-
Harada, T.1
Katsuhira, T.2
Hattori, K.3
Oku, A.4
-
18
-
-
10544244322
-
-
note
-
Although implied as a short-lived intermediate in Scheme 3, 12a may exist only as a transition state structure.
-
-
-
-
19
-
-
0000795682
-
-
and references cited therein
-
For migrations of halogen-substituted triorganozincates, see: Harada, T.; Wada, H.: Oku, A. J. Org. Chem. 1995, 60, 5370 and references cited therein.
-
(1995)
J. Org. Chem.
, vol.60
, pp. 5370
-
-
Harada, T.1
Wada, H.2
Oku, A.3
-
20
-
-
10544225093
-
-
note
-
2OLi, 31). Low conversions for the dialkoxide and lithium ethoxide likely reflects the limited solubility of these species at - 70°C. Low temperatures and inverse addition of 7 to 8 (thereby preventing free lithium enolate 7 attack on ethyl iodide) are necessary to minimize formation of 10 (typically, 3-6% of 10 is still observed).
-
-
-
-
21
-
-
10544221784
-
-
note
-
-1. (13) Ratios were determined by GLC analysis (experimental details are described in the Supporting Information).
-
-
-
-
22
-
-
10544244747
-
-
note
-
Only the homoaldol product 4a was detected in the crude mixture (HPLC).
-
-
-
-
23
-
-
0030032022
-
-
For a recent example of diastereoselective homoaldol reactions of zinc homoenolates, see: (a) Houkawa, T.; Ueda, T.; Sakami, S.; Asaoka, M.; Takei, H. Tetrahedron Lett. 1996, 37, 1045. See also: (b) Nakamura, E.; Oshino, H.; Kuwajima, I. J. Am. Chem. Soc. 1986, 108, 3745.
-
(1996)
Tetrahedron Lett.
, vol.37
, pp. 1045
-
-
Houkawa, T.1
Ueda, T.2
Sakami, S.3
Asaoka, M.4
Takei, H.5
-
24
-
-
15144352918
-
-
For a recent example of diastereoselective homoaldol reactions of zinc homoenolates, see: (a) Houkawa, T.; Ueda, T.; Sakami, S.; Asaoka, M.; Takei, H. Tetrahedron Lett. 1996, 37, 1045. See also: (b) Nakamura, E.; Oshino, H.; Kuwajima, I. J. Am. Chem. Soc. 1986, 108, 3745.
-
(1986)
J. Am. Chem. Soc.
, vol.108
, pp. 3745
-
-
Nakamura, E.1
Oshino, H.2
Kuwajima, I.3
-
25
-
-
10544234738
-
-
note
-
The stereoselectivity of the homoaldol reaction was determined by transformation to the lactones (vide infra) and examination of coupling constants and NOE effects.
-
-
-
|