-
1
-
-
4243145203
-
-
Contribution in partial satisfaction of the Ph.D. degree in chemistry
-
Contribution in partial satisfaction of the Ph.D. degree in chemistry
-
-
-
-
8
-
-
33947469707
-
-
Bender, M L.; Chow, Y. L.; Choulpek, F J. Am. Chem. Soc. 1958, 80, 5380.
-
(1958)
J. Am. Chem. Soc.
, vol.80
, pp. 5380
-
-
Bender, M.L.1
Chow, Y.L.2
Choulpek, F.3
-
9
-
-
0011366384
-
-
Zimmering, P. E., Westhead, E. W , and Morawetz, H. Biochem. Biophys Acta 1957, 25, 376.
-
(1957)
Biochem. Biophys Acta
, vol.25
, pp. 376
-
-
Zimmering, P.E.1
Westhead, E.W.2
Morawetz, H.3
-
15
-
-
0004135644
-
-
W H. Freeman and Co., San Francisco, CA, Chapter 2
-
Walsh, C Enzymatic Reaction Mechanisms: W H. Freeman and Co., San Francisco, CA, 1979: Chapter 2.
-
(1979)
Enzymatic Reaction Mechanisms
-
-
Walsh, C.1
-
16
-
-
4243067593
-
-
Harper and Row: Philadelphia, PA, Chapter 6
-
Rawin, J. D. Biochemistry; Harper and Row: Philadelphia, PA, 1984, Chapter 6
-
(1984)
Biochemistry
-
-
Rawin, J.D.1
-
17
-
-
4243110773
-
Intramoleculanty: Proxmity and Strain
-
Lieberman, J. F., Greenbere, A., Eds : VCH Publishers, Inc.; New York
-
Czarnik, A. W. Intramoleculanty: Proxmity and Strain. In Mechanistic Principles of Enzyme Activity; Lieberman, J. F., Greenbere, A., Eds : VCH Publishers, Inc.; New York, 1988; p 80
-
(1988)
Mechanistic Principles of Enzyme Activity
, pp. 80
-
-
Czarnik, A.W.1
-
19
-
-
0004081264
-
-
Jones and Bartlett; Boston, MA, Chapter 5
-
Abeles, R. H ; Frey, P A., Jencks, W. P. Biochemistry, Jones and Bartlett; Boston, MA, 1992; Chapter 5.
-
(1992)
Biochemistry
-
-
Abeles, R.H.1
Frey, P.A.2
Jencks, W.P.3
-
23
-
-
4243136208
-
-
note
-
For reactions whose rate constants were much less effected by the number of single bonds between the electrophile and nucleophile, we proposed (refs 21 and 22) that there was a smaller free energy difference between unproductive extended conformations and conformations where electrophile and nucleophile were Juxtaposed for reaction
-
-
-
-
30
-
-
0000792790
-
-
Bruice, T. C., Brown, A.; Harris, D O. Proc. Natl. Acad. Sci U.S.A. 1971, 68, 658.
-
(1971)
Proc. Natl. Acad. Sci U.S.A.
, vol.68
, pp. 658
-
-
Bruice, T.C.1
Brown, A.2
Harris, D.O.3
-
33
-
-
0000509062
-
-
(b) Page, M. I.; Jencks, W. P. Gazz, Chim. Ital. 1987, 117, 455.
-
(1987)
Gazz, Chim. Ital.
, vol.117
, pp. 455
-
-
Page, M.I.1
Jencks, W.P.2
-
34
-
-
4243136207
-
-
note
-
Such pericyclic reactions were chosen because of the belief that their rate constants are insensitive to the nature of the solvent. Breslow (ref 31) has shown. however. that solvent water catalyzes the pericyclic condensations through hydrophobic squeezing together of reactants.
-
-
-
-
37
-
-
4243201769
-
-
note
-
Subsequently, Jencks proposed that the process of luring the substrate to surrender with rotational and translational entropy in an enzymatic embrace to provide a product of altered form be known as the Circe effect (see ref 33)
-
-
-
-
38
-
-
0016624901
-
Binding Energy, Specificity, and Enzyme Catalysis: The Circe Effect
-
Jencks, W. P. Binding Energy, Specificity, and Enzyme Catalysis: The Circe Effect. Adv. Enzymol. 1975, 43, 223.
-
(1975)
Adv. Enzymol.
, vol.43
, pp. 223
-
-
Jencks, W.P.1
-
39
-
-
4243133933
-
-
Schowen, R. L., Candour, R. D., Eds.; Plenum Press: New York, Chapter 2
-
Schowen, R. L. In Transition States of Biochemical Processes; Schowen, R. L., Candour, R. D., Eds.; Plenum Press: New York, 1978; Chapter 2.
-
(1978)
Transition States of Biochemical Processes
-
-
Schowen, R.L.1
-
43
-
-
4243065247
-
-
A software product of Tripos Associates, Inc., of St. Louis, MO
-
A software product of Tripos Associates, Inc., of St. Louis, MO.
-
-
-
-
46
-
-
0001362186
-
-
and references therein. Dr. Peter Fox kindly provided additional parameters assembled by N. L Allinger, J. P. Bowen. and P. Fox
-
Allinger, N. L ; Zhu, Z-Q. S.; Chen, K. J. Am. Chem. Soc. 1992, 114, 6120 and references therein. Dr. Peter Fox kindly provided additional parameters assembled by N. L Allinger, J. P. Bowen. and P. Fox.
-
(1992)
J. Am. Chem. Soc.
, vol.114
, pp. 6120
-
-
Allinger, N.L.1
Zhu, Z.-Q.S.2
Chen, K.3
-
47
-
-
0017298131
-
-
(a) Scheiner, S.; Lipscomb, W. N., Kleier, D. A. J. Am. Chem. Soc. 1976, 98, 4770.
-
(1976)
J. Am. Chem. Soc.
, vol.98
, pp. 4770
-
-
Scheiner, S.1
Lipscomb, W.N.2
Kleier, D.A.3
-
49
-
-
4243108572
-
-
note
-
The geminal effect should slightly stretch the C-C bond between the backbone and the phenyl groups. However. this effect is not accounted for in MM3(92) force field, such that these C-C bonds may be slightly shorter than in reality (ref 42). Thus, this would result in the over calculation of the number of NACs for the β-gem-diphenylglutarate.
-
-
-
-
50
-
-
4243065246
-
-
Personal communication with Dr. Norman Allinger
-
Personal communication with Dr. Norman Allinger, 1994
-
(1994)
-
-
-
51
-
-
4243065248
-
-
note
-
The calculations show, the methylene-β-gem-carbon-methylene angle, Φ, in the β-gem-substituted glutarates to be slightly smaller than Φ equation presented is in the glutarate ester The Φ angle for glutarate is 114.4°. while Φ for the β-gem-dialky 1 glutarates ranges from 112° to 113° for β-gem-diethyl. from 107° to 112° for β-gem-diphenyl. and from 107° to 114° for β-gem-diisopropyl.
-
-
-
-
52
-
-
4243095156
-
-
note
-
The MM3 final energies (kcal/mol) for the FGSC are as follows: 221 system. -640.75; succinate. -678.46; glutarate, -677.01; α-gem-dimethylglutarate. -671.54. β-gem-diethylglutarate, -663.59; β-gem-diphenylglutarate. -2048.23: β-gem-diisopropylgluarate. -649.90
-
-
-
-
55
-
-
33847805515
-
-
(b) Burgi, H. B., Lehn, J. M.; Wipff, G. J. Am. Chem. Soc. 1974, 96, 1956.
-
(1974)
J. Am. Chem. Soc.
, vol.96
, pp. 1956
-
-
Burgi, H.B.1
Lehn, J.M.2
Wipff, G.3
-
56
-
-
85088077814
-
-
note
-
11 (see ref 48).
-
-
-
-
61
-
-
0000751015
-
-
(e) Danforth, C.; Nicholson, A. W., James, J. C.; Loudon, G. M. J. Am. Chem. Soc. 1976, 98, 4275.
-
(1976)
J. Am. Chem. Soc.
, vol.98
, pp. 4275
-
-
Danforth, C.1
Nicholson, A.W.2
James, J.C.3
Loudon, G.M.4
-
63
-
-
4243194923
-
-
note
-
41 and the fact that FGSC and NAC are seperated by but <0.5 kcal/mol. We compare the lowest energy FGSC and NAC in order to have two conformations between which one could consider an equillibrium. Actually, there are a total of 553 FGSCs and 58 NACs for the β-gem-diphenylglutarate ester. If we take those conformations which are +2 kcal/mol above the lowest MM3 final energy conformation (FGSC) and within a 2 kcal/mole from the lowest energy NAC. there are then 179 FGSCs and 6 NACs. Now, if we take the lowest energy FGSC and the average thermodynamic values for the six NACs we obtain ΔG° = 0.0.
-
-
-
|