메뉴 건너뛰기




Volumn 5, Issue 4, 1996, Pages 768-774

The importance of larger data sets for protein secondary structure prediction with neural networks

Author keywords

neural networks; secondary structure prediction; structural class prediction

Indexed keywords

ACCURACY; AMINO ACID COMPOSITION; AMINO ACID SEQUENCE; ARTICLE; DATA BASE; NERVE CELL NETWORK; PREDICTION; PRIORITY JOURNAL; PROTEIN FOLDING; PROTEIN SECONDARY STRUCTURE; PROTEIN STRUCTURE; PROTEIN TERTIARY STRUCTURE;

EID: 0029872773     PISSN: 09618368     EISSN: None     Source Type: Journal    
DOI: 10.1002/pro.5560050422     Document Type: Article
Times cited : (37)

References (24)
  • 1
    • 0029149907 scopus 로고
    • Protein secondary structure prediction
    • Barton GJ. 1995. Protein secondary structure prediction. Curr Opin Struct Biol 5:372-376.
    • (1995) Curr Opin Struct Biol , vol.5 , pp. 372-376
    • Barton, G.J.1
  • 2
    • 0028906598 scopus 로고
    • Neural networks for secondary structure and structural class predictions
    • Chandonia JM, Karplus M. 1995. Neural networks for secondary structure and structural class predictions. Protein Sci 4:275-285.
    • (1995) Protein Sci , vol.4 , pp. 275-285
    • Chandonia, J.M.1    Karplus, M.2
  • 3
    • 0000335209 scopus 로고
    • Hierarchical algorithm for computer modeling of protein tertiary structure: Folding of myoglobin to 6.2 Å resolution
    • Gunn JR, Monge A, Friesner R, Marshall C. 1994. Hierarchical algorithm for computer modeling of protein tertiary structure: Folding of myoglobin to 6.2 Å resolution. J Phys Chem 98:702-711.
    • (1994) J Phys Chem , vol.98 , pp. 702-711
    • Gunn, J.R.1    Monge, A.2    Friesner, R.3    Marshall, C.4
  • 4
    • 0000268209 scopus 로고
    • Protein secondary structure prediction with a neural network
    • Holley H, Karplus M. 1989. Protein secondary structure prediction with a neural network. Proc Natl Acad Sci USA 86:152-156.
    • (1989) Proc Natl Acad Sci USA , vol.86 , pp. 152-156
    • Holley, H.1    Karplus, M.2
  • 5
    • 0026314849 scopus 로고
    • Neural networks for protein structure prediction
    • Holley H, Karplus M. 1991. Neural networks for protein structure prediction. Methods Enzymol 202:204-224.
    • (1991) Methods Enzymol , vol.202 , pp. 204-224
    • Holley, H.1    Karplus, M.2
  • 6
    • 0025176557 scopus 로고
    • Conformation changes involved in the activation of ras p21: Implications for related proteins
    • Jurnak F, Heffron S, Bergmann E. 1990. Conformation changes involved in the activation of ras p21: Implications for related proteins. Cell 60: 525-528.
    • (1990) Cell , vol.60 , pp. 525-528
    • Jurnak, F.1    Heffron, S.2    Bergmann, E.3
  • 7
    • 0020997912 scopus 로고
    • Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features
    • Kabsch W, Sander C. 1983b. Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577-2637.
    • (1983) Biopolymers , vol.22 , pp. 2577-2637
    • Kabsch, W.1    Sander, C.2
  • 8
    • 0028327236 scopus 로고
    • Protein folding dynamics: The diffusion-collision model and experimental data
    • Karplus M, Weaver DL. 1994. Protein folding dynamics: The diffusion-collision model and experimental data. Protein Sci 3:650-668.
    • (1994) Protein Sci , vol.3 , pp. 650-668
    • Karplus, M.1    Weaver, D.L.2
  • 9
    • 0027002164 scopus 로고
    • The feature selection problem: Traditional methods and a new algorithm
    • Cambridge, Massachusetts: MIT Press
    • Kira K, Rendell L 1992. The feature selection problem: Traditional methods and a new algorithm. In: Proceedings of the National Conference on Artificial Intelligence 10. Cambridge, Massachusetts: MIT Press. pp 129-134.
    • (1992) Proceedings of the National Conference on Artificial Intelligence , vol.10 , pp. 129-134
    • Kira, K.1    Rendell, L.2
  • 10
    • 0025334980 scopus 로고
    • Improvements in protein secondary structure prediction by an enhanced neural network
    • Kneller DG, Cohen FE, Langridge R. 1990. Improvements in protein secondary structure prediction by an enhanced neural network. J Mol Biol 214:171-182.
    • (1990) J Mol Biol , vol.214 , pp. 171-182
    • Kneller, D.G.1    Cohen, F.E.2    Langridge, R.3
  • 11
    • 0017309766 scopus 로고
    • Structural patterns in globular proteins
    • Levitt M, Chothia C. 1976. Structural patterns in globular proteins. Nature (Lond) 261:552-558.
    • (1976) Nature (Lond) , vol.261 , pp. 552-558
    • Levitt, M.1    Chothia, C.2
  • 12
    • 0016772212 scopus 로고
    • Comparison of the predicted and observed secondary structure of T4 phage lysozyme
    • Matthews BW. 1975. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta 405:442-451.
    • (1975) Biochim Biophys Acta , vol.405 , pp. 442-451
    • Matthews, B.W.1
  • 13
    • 0027205884 scopus 로고
    • A scaled conjugate gradient algorithm for fast supervised learning
    • Møller M. 1993. A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks 6:525-533.
    • (1993) Neural Networks , vol.6 , pp. 525-533
    • Møller, M.1
  • 14
    • 0028283339 scopus 로고
    • An algorithm to generate low-resolution protein tertiary structures from knowledge of secondary structure
    • Monge A, Friesner R, Honig B. 1994. An algorithm to generate low-resolution protein tertiary structures from knowledge of secondary structure. Proc Natl Acad Sci USA 91:5027-5029.
    • (1994) Proc Natl Acad Sci USA , vol.91 , pp. 5027-5029
    • Monge, A.1    Friesner, R.2    Honig, B.3
  • 15
    • 0023803244 scopus 로고
    • Predicting the secondary structure of globular proteins using neural network models
    • Qian N, Sejnowski TJ. 1988. Predicting the secondary structure of globular proteins using neural network models. J Mol Biol 262:865-884.
    • (1988) J Mol Biol , vol.262 , pp. 865-884
    • Qian, N.1    Sejnowski, T.J.2
  • 16
    • 0024078021 scopus 로고
    • Identification of predictive sequence motifs limited by protein structure data base size
    • Rooman M, Wodak SJ. 1988. Identification of predictive sequence motifs limited by protein structure data base size. Nature 335:45-49.
    • (1988) Nature , vol.335 , pp. 45-49
    • Rooman, M.1    Wodak, S.J.2
  • 17
    • 0027169638 scopus 로고
    • Improved prediction of protein secondary structure by use of sequence profiles and neural networks
    • Rost B, Sander C. 1993a. Improved prediction of protein secondary structure by use of sequence profiles and neural networks. Proc Natl Acad Sci USA 90:7558-7562.
    • (1993) Proc Natl Acad Sci USA , vol.90 , pp. 7558-7562
    • Rost, B.1    Sander, C.2
  • 18
    • 0027291015 scopus 로고
    • Prediction of protein secondary structure at better than 70% accuracy
    • Rost B, Sander C. 1993b. Prediction of protein secondary structure at better than 70% accuracy. J Mol Biol 232:584-599.
    • (1993) J Mol Biol , vol.232 , pp. 584-599
    • Rost, B.1    Sander, C.2
  • 19
    • 0028300741 scopus 로고
    • Combining evolutionary information and neural networks to predict protein secondary structure
    • Rost B, Sander C. 1994. Combining evolutionary information and neural networks to predict protein secondary structure. Proteins Struct Funct Genet 19:55-72.
    • (1994) Proteins Struct Funct Genet , vol.19 , pp. 55-72
    • Rost, B.1    Sander, C.2
  • 20
    • 0028064006 scopus 로고
    • Redefining the goals of protein secondary structure prediction
    • Rost B, Sander C, Schneider R. 1994. Redefining the goals of protein secondary structure prediction. J Mol Biol 235:13-26.
    • (1994) J Mol Biol , vol.235 , pp. 13-26
    • Rost, B.1    Sander, C.2    Schneider, R.3
  • 21
    • 0000646059 scopus 로고
    • Learning internal representations by error propagation
    • Rumelhart DE, McClelland JL, eds. Cambridge, Massachusetts: MIT Press
    • Rumelhart D, Hinton GE, Williams RJ. 1986. Learning internal representations by error propagation. In: Rumelhart DE, McClelland JL, eds. Parallel distributed processing, vol I. Cambridge, Massachusetts: MIT Press. pp 318-362
    • (1986) Parallel Distributed Processing , vol.1 , pp. 318-362
    • Rumelhart, D.1    Hinton, G.E.2    Williams, R.J.3
  • 22
    • 0028051828 scopus 로고
    • Derivation of rules for comparative protein modeling from a database of protein structure alignments
    • Sali A. Overington JP. 1994. Derivation of rules for comparative protein modeling from a database of protein structure alignments. Protein Sci 3:1582-1596.
    • (1994) Protein Sci , vol.3 , pp. 1582-1596
    • Sali, A.1    Overington, J.P.2
  • 23
    • 12044258095 scopus 로고
    • Theory and applications of neural computing in chemical science
    • Sumpter BG, Getino C, Noid DW. 1994. Theory and applications of neural computing in chemical science. Annu Rev Phys Chem 45:439-481.
    • (1994) Annu Rev Phys Chem , vol.45 , pp. 439-481
    • Sumpter, B.G.1    Getino, C.2    Noid, D.W.3
  • 24
    • 0026771388 scopus 로고
    • Hybrid system for protein secondary structure prediction
    • Zhang X, Mesirov JP, Waltz DL. 1992. Hybrid system for protein secondary structure prediction. J Mol Biol 225:1049-1063.
    • (1992) J Mol Biol , vol.225 , pp. 1049-1063
    • Zhang, X.1    Mesirov, J.P.2    Waltz, D.L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.