-
2
-
-
0026626025
-
M) with a two-level autocorrelation function and a large linear span
-
Jan.
-
M) with a two-level autocorrelation function and a large linear span," IEEE Trans. Inform. Theory, vol. 38, pp. 120-130, Jan. 1992.
-
(1992)
IEEE Trans. Inform. Theory
, vol.38
, pp. 120-130
-
-
Antweiler, M.1
Bomer, L.2
-
3
-
-
0027283207
-
Cascaded GMW sequences
-
Jan.
-
A. Klapper, A. H. Chan, and M. Goresky, "Cascaded GMW sequences," IEEE Trans. Inform. Theory, vol. 39, pp. 177-183, Jan. 1993.
-
(1993)
IEEE Trans. Inform. Theory
, vol.39
, pp. 177-183
-
-
Klapper, A.1
Chan, A.H.2
Goresky, M.3
-
4
-
-
0003600298
-
-
Reading, MA: Addison-Wesley
-
R. Lidl and H. Niederreiter, Finite Fields, Encyclopaedia of Mathematics and Its Applications, vol. 20. Reading, MA: Addison-Wesley, 1983.
-
(1983)
Finite Fields, Encyclopaedia of Mathematics and Its Applications
, vol.20
-
-
Lidl, R.1
Niederreiter, H.2
-
6
-
-
0016883773
-
Galois switching functions and their applications
-
Jan.
-
B. Benjauthrit and I. S. Reed, "Galois switching functions and their applications," IEEE Trans. Comput., vol. C-25, no. 1, pp. 78-86, Jan. 1976.
-
(1976)
IEEE Trans. Comput.
, vol.C-25
, Issue.1
, pp. 78-86
-
-
Benjauthrit, B.1
Reed, I.S.2
-
7
-
-
85032286198
-
On functions of linear shift sequences
-
Berlin, Germany: Springer-Verlag
-
T. Herlestam, "On functions of linear shift sequences," in Advances in Cryptology-Eurocrypt'85, Lecture Notes in Computer Science, no. 219. Berlin, Germany: Springer-Verlag, 1985, pp. 119-129.
-
(1985)
Advances in Cryptology-eurocrypt'85, Lecture Notes in Computer Science
, Issue.219
, pp. 119-129
-
-
Herlestam, T.1
-
8
-
-
0017017134
-
An analysis of the structure and complexity of nonlinear binary sequence generators
-
Nov.
-
E. L. Key, "An analysis of the structure and complexity of nonlinear binary sequence generators," IEEE Trans. Inform. Theory, vol. IT-22, pp. 732-736, Nov. 1976.
-
(1976)
IEEE Trans. Inform. Theory
, vol.IT-22
, pp. 732-736
-
-
Key, E.L.1
-
9
-
-
0141913549
-
Galois linear group sequences
-
July-Dec.
-
G. Gong, A. Di Porto, and W. Wolfowicz, "Galois linear group sequences," LA COMVNICAZIONE, Note Recensioni Notizie, vol. XLII, pp. 83-89, July-Dec. 1993.
-
(1993)
LA COMVNICAZIONE, Note Recensioni Notizie
, vol.42
, pp. 83-89
-
-
Gong, G.1
Di Porto, A.2
Wolfowicz, W.3
-
10
-
-
33748787895
-
On the linear span of binary sequences from finite geometries, q odd
-
Berlin, Germany: Springer-Verlag
-
A. H. Chan and R. Games, "On the linear span of binary sequences from finite geometries, q odd," in Advances in Cryptology-Crypto'86, Lecture Notes in Computer Science,vol. 263. Berlin, Germany: Springer-Verlag, 1987, pp. 505-417.
-
(1987)
Advances in Cryptology-crypto'86, Lecture Notes in Computer Science
, vol.263
, pp. 505-1417
-
-
Chan, A.H.1
Games, R.2
-
11
-
-
0002078073
-
Cross-correlations of linearly and quadratically related geometric sequences and GMW sequences
-
A. Klapper, A. H. Chan, and M. Goresky, "Cross-correlations of linearly and quadratically related geometric sequences and GMW sequences," Discr. Appl. Math., vol. 46, pp. 1-20, 1993.
-
(1993)
Discr. Appl. Math.
, vol.46
, pp. 1-20
-
-
Klapper, A.1
Chan, A.H.2
Goresky, M.3
-
12
-
-
33747632586
-
Some cryptographical properties of exponential functions
-
X. G. Chang, Z. D. Dai, and G. Gong, "Some cryptographical properties of exponential functions," in ASIACYPTO'94.
-
ASIACYPTO'94
-
-
Chang, X.G.1
Dai, Z.D.2
Gong, G.3
-
13
-
-
0028675685
-
The vulnerability of geometric sequences based on fields of odd characteristic
-
A. Klapper, "The vulnerability of geometric sequences based on fields of odd characteristic," J. Cryptol, vol. 7, pp. 33-51, 1994.
-
(1994)
J. Cryptol
, vol.7
, pp. 33-51
-
-
Klapper, A.1
-
14
-
-
33747654931
-
-
Ph.D. dissertation, Univ. of Electronic Sci. & Tech. of China, Chengdu, Sichuan
-
G. Gong, "An analysis and synthesis of phases and linear complexity of nonlinear feed forward sequences," Ph.D. dissertation, Univ. of Electronic Sci. & Tech. of China, Chengdu, Sichuan, 1990.
-
(1990)
An Analysis and Synthesis of Phases and Linear Complexity of Nonlinear Feed Forward Sequences
-
-
Gong, G.1
|