메뉴 건너뛰기




Volumn 15, Issue 5, 1996, Pages 671-683

Universal approximation capability of EBF neural networks with arbitrary activation functions

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATION THEORY; FUNCTION EVALUATION; PROBLEM SOLVING; THEOREM PROVING;

EID: 0029720180     PISSN: 0278081X     EISSN: None     Source Type: Journal    
DOI: 10.1007/bf01188988     Document Type: Article
Times cited : (10)

References (15)
  • 1
    • 0027698748 scopus 로고
    • Approximation to continuous functionals by neural networks with application to dynamical systems
    • T. Chen and H. Chen, Approximation to continuous functionals by neural networks with application to dynamical systems, IEEE Trans. on Neural Networks, vol. 4, no. 6, pp. 910-918, 1993.
    • (1993) IEEE Trans. on Neural Networks , vol.4 , Issue.6 , pp. 910-918
    • Chen, T.1    Chen, H.2
  • 2
    • 0029343809 scopus 로고
    • Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamic systems
    • T. Chen and H. Chen, Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamic systems, accepted for publication by IEEE Trans. on Neural Networks, vol. 6, no. 4, pp. 911-917, 1995.
    • (1995) IEEE Trans. on Neural Networks , vol.6 , Issue.4 , pp. 911-917
    • Chen, T.1    Chen, H.2
  • 3
    • 0029341753 scopus 로고
    • Approximation capability to functions of several variables, nonlinear functional and operators by radial basis function neural networks
    • T. Chen and H. Chen, Approximation capability to functions of several variables, nonlinear functional and operators by radial basis function neural networks, accepted for publication by IEEE Trans. on Neural Networks, vol. 6, no. 4, pp. 904-910, 1995.
    • (1995) IEEE Trans. on Neural Networks , vol.6 , Issue.4 , pp. 904-910
    • Chen, T.1    Chen, H.2
  • 4
    • 9644285073 scopus 로고
    • A constructive proof of cybenko's approximation theorem and its extensions
    • editors LePage and Page, Proc. of the 22nd Symposium on the Interface, East Lansing, MI, May Springer-Verlag, Berlin and New York, ISBN 0-387-97719-8
    • T. Chen, H. Chen, and R.-W. Liu, A constructive proof of cybenko's approximation theorem and its extensions, pp. 163-168 in Computing Science and Statistics, editors LePage and Page, Proc. of the 22nd Symposium on the Interface, East Lansing, MI, May 1990, Springer-Verlag, Berlin and New York, ISBN 0-387-97719-8.
    • (1990) Computing Science and Statistics , pp. 163-168
    • Chen, T.1    Chen, H.2    Liu, R.-W.3
  • 5
    • 0029207175 scopus 로고
    • n) by multilayer feedforward networks and related problems
    • n) by multilayer feedforward networks and related problems, IEEE Trans. on Neural Networks, vol. 6, no. 1, pp. 25-30, 1995.
    • (1995) IEEE Trans. on Neural Networks , vol.6 , Issue.1 , pp. 25-30
    • Chen, T.1    Chen, H.2    Liu, R.-W.3
  • 6
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • G. Cybenko, Approximation by superpositions of a sigmoidal function, in Math. of Control, Signals and Systems, vol. 2, no, 4, pp. 303-314, 1989.
    • (1989) Math. of Control, Signals and Systems , vol.2 , Issue.4 , pp. 303-314
    • Cybenko, G.1
  • 7
    • 0019284065 scopus 로고
    • Implication and applications of Kolmogorov's superposition theorem
    • R. J. P. DeFigueiredo, Implication and applications of Kolmogorov's superposition theorem, IEEE Trans. Automatic Control, vol. AC-25, no. 6, pp. 1227-1230, 1980.
    • (1980) IEEE Trans. Automatic Control , vol.AC-25 , Issue.6 , pp. 1227-1230
    • Defigueiredo, R.J.P.1
  • 8
    • 0025751820 scopus 로고
    • Approximation capabilities of multilayer feedforward networks
    • K. Hornik, Approximation capabilities of multilayer feedforward networks, Neural Networks, vol. 4, pp. 251-257, 1991.
    • (1991) Neural Networks , vol.4 , pp. 251-257
    • Hornik, K.1
  • 9
    • 0024880831 scopus 로고
    • Multi-layer feedforward networks are universal approximators
    • K. Hornik, M. Stinchcombe, and H. White, Multi-layer feedforward networks are universal approximators, Neural Networks, vol. 2, pp. 359-366, 1989.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 10
    • 0027262895 scopus 로고
    • Multilayer feedforward networks with a non-polynomial activation function can approximate any function
    • M. Leshno, V. Lin, A. Pinkus, and S. Schocken, Multilayer feedforward networks with a non-polynomial activation function can approximate any function, Neural Networks, vol. 6, no. 6, pp. 861-867, 1993.
    • (1993) Neural Networks , vol.6 , Issue.6 , pp. 861-867
    • Leshno, M.1    Lin, V.2    Pinkus, A.3    Schocken, S.4
  • 11
    • 0000358945 scopus 로고
    • Approximation by superposition of sigmoidal and radial basis functions
    • H. N. Mhaskar and C. A. Micchelli, Approximation by superposition of sigmoidal and radial basis functions, Advances in Applied Mathematics, vol. 13, pp. 350-373, 1992.
    • (1992) Advances in Applied Mathematics , vol.13 , pp. 350-373
    • Mhaskar, H.N.1    Micchelli, C.A.2
  • 12
    • 0028195440 scopus 로고
    • Nonlinear approximations using elliptic basis function networks
    • J. Park and I. W. Sandberg, Nonlinear approximations using elliptic basis function networks, Circuits, Systems, and Signal Processing, vol. 13, no. 1, pp. 99-113, 1994.
    • (1994) Circuits, Systems, and Signal Processing , vol.13 , Issue.1 , pp. 99-113
    • Park, J.1    Sandberg, I.W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.