-
4
-
-
84990709631
-
-
(c) A. L. Rockwood, M. Busman, H. R. Udseth and R. D. Smith, Rapid Commun. Mass Spectrom. 5, 582 (1991).
-
(1991)
Rapid Commun. Mass Spectrom.
, vol.5
, pp. 582
-
-
Rockwood, A.L.1
Busman, M.2
Udseth, H.R.3
Smith, R.D.4
-
6
-
-
0028814729
-
-
M. Meot-Ner, A. R. Dongré, Á. Somogyi and V. H. Wysocki, Rapid Commun. Mass Spectrom. 9, 829 (1995).
-
(1995)
Rapid Commun. Mass Spectrom.
, vol.9
, pp. 829
-
-
Meot-Ner, M.1
Dongré, A.R.2
Somogyi, Á.3
Wysocki, V.H.4
-
10
-
-
0001310329
-
-
J. L. Jones, A. R. Dongré, Á. Somogyi and V. H. Wysocki, J. Am. Chem. Soc. 116, 8368 (1994).
-
(1994)
J. Am. Chem. Soc.
, vol.116
, pp. 8368
-
-
Jones, J.L.1
Dongré, A.R.2
Somogyi, Á.3
Wysocki, V.H.4
-
13
-
-
0000417918
-
-
(a) M. Morris, D. E. Riederer, Jr., B. E. Winger, R. G. Cooks, T. Ast and C. E. D. Chidsey, Int. J. Mass Spectrom. Ion Processes 122, 181 (1992).
-
(1992)
Int. J. Mass Spectrom. Ion Processes
, vol.122
, pp. 181
-
-
Morris, M.1
Riederer Jr., D.E.2
Winger, B.E.3
Cooks, R.G.4
Ast, T.5
Chidsey, C.E.D.6
-
15
-
-
85159501640
-
-
V. H. Wysocki, J.-M. Ding, J. L. Jones, J. H. Callahan and F. L. King, J. Am. Soc. Mass Spectrom. 3, 29 (1992).
-
(1992)
J. Am. Soc. Mass Spectrom.
, vol.3
, pp. 29
-
-
Wysocki, V.H.1
Ding, J.-M.2
Jones, J.L.3
Callahan, J.H.4
King, F.L.5
-
16
-
-
0000606415
-
-
S. A. Miller, D. E. Riederer, Jr., R. G. Cooks, W. R. Cho, H. W. Lee and H. Kang, J. Phys. Chem. 98, 245 (1994).
-
(1994)
J. Phys. Chem.
, vol.98
, pp. 245
-
-
Miller, S.A.1
Riederer Jr., D.E.2
Cooks, R.G.3
Cho, W.R.4
Lee, H.W.5
Kang, H.6
-
17
-
-
84989111343
-
-
M. J. Dekrey, H. I. Kenttämaa, V. H. Wysocki and R. G. Cooks, Org. Mass Spectrom. 21, 193 (1986).
-
(1986)
Org. Mass Spectrom.
, vol.21
, pp. 193
-
-
Dekrey, M.J.1
Kenttämaa, H.I.2
Wysocki, V.H.3
Cooks, R.G.4
-
23
-
-
0026208006
-
-
(a) R. D. Beck, P. M. St. John, M. L. Homer and R. L. Whetten, Science 253, 879 (1991).
-
(1991)
Science
, vol.253
, pp. 879
-
-
Beck, R.D.1
St. John, P.M.2
Homer, M.L.3
Whetten, R.L.4
-
28
-
-
0004024840
-
-
Elsevier, Amsterdam
-
R. G. Cooks, J. H. Beynon, R. M. Caprioli and G. R. Lester, Metastable Ions, Elsevier, Amsterdam, 1973.
-
(1973)
Metastable Ions
-
-
Cooks, R.G.1
Beynon, J.H.2
Caprioli, R.M.3
Lester, G.R.4
-
30
-
-
33144483882
-
-
Eds. I. Cornides, Gy. Horváth and K. Vékey, Wiley, Chichester
-
P. J. Derrick, P. M. Loyd and J. R. Christie, in Advances in Mass Spectromelry, Vol. 13, Eds. I. Cornides, Gy. Horváth and K. Vékey, Wiley, Chichester, 1995.
-
(1995)
Advances in Mass Spectromelry
, vol.13
-
-
Derrick, P.J.1
Loyd, P.M.2
Christie, J.R.3
-
31
-
-
0027918082
-
-
A. L. McCormack, Á. Somogyi, A. R. Dongré and V. H. Wysocki, Anal. Chem. 65, 2859 (1993).
-
(1993)
Anal. Chem.
, vol.65
, pp. 2859
-
-
McCormack, A.L.1
Somogyi, Á.2
Dongré, A.R.3
Wysocki, V.H.4
-
36
-
-
0003583820
-
-
VCH Publishers, New York
-
+ by a low energy rearrangement process, the activation energy of which was reported to be ca. 1 eV (K. L. Busch, G. L. Glish and S. A. McLuckey, Mass Spectrometry/Mass Spectrometry: Techniques and Applications of Tandem Mass Spectrometry, VCH Publishers, New York, 1988). We were not able to detect this low-energy process so we concluded that the internal energy provided by thermal and capillary/ skimmer activation must be high enough to drive a fragmentation with 1 eV activation energy and the appropriate kinetic shift associated with the instrument (in the microsecond time scale). From this, we estimate that in the capillary skimmer region, at 30V capillary/skimmer voltage difference, singly charged ions gain an energy of ca. 0.5-1.0 eV. It should also be noted that the supersonic cooling cannot be a dominant process. By this process, it is mainly the translational energy that is reduced (but this can be overcome by the applied 30 V potential difference in this region). The internal energy provided by thermal excitation in the capillary region can be reduced in two ways: collisional cooling and infrared radiation. Infrared radiation requires more time than several microseconds, so this is an unlikely process.
-
(1988)
Mass Spectrometry/Mass Spectrometry: Techniques and Applications of Tandem Mass Spectrometry
-
-
Busch, K.L.1
Glish, G.L.2
McLuckey, S.A.3
-
37
-
-
0000087750
-
-
-1; see, R. C. Dunbar, J. Chem. Phys. 90, 7369 (1989). The number of collisions can be estimated based on the pressure in this region, which is ca. 0.5 torr. At this pressure, only a few thousand collisions can occur even between the solvent molecules, and collisions between protonated peptides and solvent molecules are even less likely. On the other hand, based on the observation of gas-phase collisional activation in the capillary-skimmer region, we do know that a few collisions can occur. However, such a small number of collisions is not enough to drain the internal energy and leads to further energy gain rather than to energy loss in the capillary-skimmer region. This assumption is supported by recent observations that the ESI/SID fragmentation efficiency curves are slightly shifted to lower SID energies with increasing capillary-skimmer voltage (for further details, see Refs 7 and 8).
-
(1989)
J. Chem. Phys.
, vol.90
, pp. 7369
-
-
Dunbar, R.C.1
|