메뉴 건너뛰기




Volumn 29, Issue 1, 1996, Pages 88-94

An efficient method for solving two-point boundary value problems with extremely high accuracy

Author keywords

Immobilized enzyme reaction; S system; Superhigh order accuracy; Taylor series method; Two point boundary value problem

Indexed keywords

BOUNDARY FLOW; BOUNDARY VALUE PROBLEMS; COMPUTER SIMULATION;

EID: 0029676356     PISSN: 00219592     EISSN: None     Source Type: Journal    
DOI: 10.1252/jcej.29.88     Document Type: Article
Times cited : (11)

References (17)
  • 3
    • 0020143282 scopus 로고
    • Solving Ordinary Differential Equations Using Taylor Series
    • Corliss, G. and Y. F. Chang; "Solving Ordinary Differential Equations Using Taylor Series," ACM Trans. Math. Software, 8, 114-144 (1982)
    • (1982) ACM Trans. Math. Software , vol.8 , pp. 114-144
    • Corliss, G.1    Chang, Y.F.2
  • 4
    • 24444437044 scopus 로고
    • Continuous Flow Systems: Distribution of Residence Times
    • Danckwerts, P. V.; "Continuous Flow Systems: Distribution of Residence Times," Chem. Eng. Sci., 2, 1-13 (1953)
    • (1953) Chem. Eng. Sci. , vol.2 , pp. 1-13
    • Danckwerts, P.V.1
  • 5
    • 0001817447 scopus 로고
    • Axial Diffusion in Isothermal Tubular Flow Reactors
    • Fan, L. T. and R. C. Baille; "Axial Diffusion in Isothermal Tubular Flow Reactors," Chem. Eng. Sci., 13, 63-68 (1960)
    • (1960) Chem. Eng. Sci. , vol.13 , pp. 63-68
    • Fan, L.T.1    Baille, R.C.2
  • 6
    • 84981794356 scopus 로고
    • The Solution of a Boundary Value Problem in Reactor Design Using Galerkin's Method
    • Grotch, S. L.; "The Solution of a Boundary Value Problem in Reactor Design Using Galerkin's Method," AIChE J., 15, 463-465 (1969)
    • (1969) AIChE J. , vol.15 , pp. 463-465
    • Grotch, S.L.1
  • 7
    • 0025445207 scopus 로고
    • Efficient Solution of Nonlinear Ordinary Differential Equations Expressed in S-System Canonical Form
    • Irvine, D. H. and M. A. Savageau; "Efficient Solution of Nonlinear Ordinary Differential Equations Expressed in S-System Canonical Form," SIAM J. Numer. Anal., 27, 704-735 (1990)
    • (1990) SIAM J. Numer. Anal. , vol.27 , pp. 704-735
    • Irvine, D.H.1    Savageau, M.A.2
  • 8
    • 84984082641 scopus 로고
    • Quasilinearization, Difference Approximation, and Nonlinear Boundary Value Problems
    • Lee, E. S.; "Quasilinearization, Difference Approximation, and Nonlinear Boundary Value Problems," AIChE J., 14, 490-496 (1968)
    • (1968) AIChE J. , vol.14 , pp. 490-496
    • Lee, E.S.1
  • 11
    • 0014649230 scopus 로고
    • Biochemical Systems Analysis I. Some Mathematical Properties of the Rate Law for the Component Enzymatic Reactions
    • Savageau, M. A.; "Biochemical Systems Analysis I. Some Mathematical Properties of the Rate Law for the Component Enzymatic Reactions," J. Theoret. Biol., 25, 365-369 (1969)
    • (1969) J. Theoret. Biol. , vol.25 , pp. 365-369
    • Savageau, M.A.1
  • 12
    • 0342349799 scopus 로고
    • Recasting Nonlinear Differential Equations as S-Systems: A Canonical Nonlinear Form
    • Savageau, M. A. and E. O. Voit; "Recasting Nonlinear Differential Equations as S-Systems: A Canonical Nonlinear Form," Math. Biosci., 87, 83-115 (1987)
    • (1987) Math. Biosci. , vol.87 , pp. 83-115
    • Savageau, M.A.1    Voit, E.O.2
  • 13
    • 0027551803 scopus 로고
    • Experimental Evaluation of the Usefulness of Equations Describing the Apparent Maximum Reaction Rate and Apparent Michaelis Constant of an Immobilized Enzyme Reaction
    • Shiraishi, F.; "Experimental Evaluation of the Usefulness of Equations Describing the Apparent Maximum Reaction Rate and Apparent Michaelis Constant of an Immobilized Enzyme Reaction," Enzyme Microb. Technol., 15, 150-154 (1993)
    • (1993) Enzyme Microb. Technol. , vol.15 , pp. 150-154
    • Shiraishi, F.1
  • 14
    • 85024262559 scopus 로고
    • Numerical Solution of Two-Point Boundary Value Problem by Combined Taylor Series Method with a Technique for Rapidly Selecting Suitable Stepsizes
    • Shiraishi, F., T. Hasegawa and H. Nagasue; "Numerical Solution of Two-Point Boundary Value Problem by Combined Taylor Series Method with a Technique for Rapidly Selecting Suitable Stepsizes," J. Chem. Eng. Jpn., 28, 306-315 (1995a)
    • (1995) J. Chem. Eng. Jpn. , vol.28 , pp. 306-315
    • Hasegawa, S.F.T.1    Nagasue, H.2
  • 15
    • 0000075833 scopus 로고
    • The Accuracy of the Numerical Solution of Two-Point Boundary Value Problem by the Orthogonal Collocation Method
    • Shiraishi, F., T. Hasegawa and H. Nagasue; "The Accuracy of the Numerical Solution of Two-Point Boundary Value Problem by the Orthogonal Collocation Method," J. Chem. Eng. Jpn., 28, 316-323 (1995b)
    • (1995) J. Chem. Eng. Jpn. , vol.28 , pp. 316-323
    • Shiraishi, F.1    Hasegawa, T.2    Nagasue, H.3
  • 16
    • 0028278944 scopus 로고
    • Influences of Nonuniform Activity Distributions on the Apparent Maximum Reaction Rate and Apparent Michaelis Constant of Immobilized Enzyme Reactions
    • Shiraishi, F. and H. Miyakawa; "Influences of Nonuniform Activity Distributions on The Apparent Maximum Reaction Rate and Apparent Michaelis Constant of Immobilized Enzyme Reactions," J. Ferment. Bioeng., 77, 224-228 (1994)
    • (1994) J. Ferment. Bioeng. , vol.77 , pp. 224-228
    • Shiraishi, F.1    Miyakawa, H.2
  • 17
    • 0000904149 scopus 로고
    • Solution of Boundary-Value Problems by Orthogonal Collocation
    • Villadsen, J. V. and W. E. Stewart; "Solution of Boundary-Value Problems by Orthogonal Collocation," Chem. Eng. Sci., 22, 1483-1501 (1967)
    • (1967) Chem. Eng. Sci. , vol.22 , pp. 1483-1501
    • Villadsen, J.V.1    Stewart, W.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.