메뉴 건너뛰기




Volumn 68, Issue 2, 1996, Pages 203-207

Artificial neural network method for flawed pipe failure evaluation: Probabilistic models

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; BENDING (DEFORMATION); DEFECTS; FAILURE ANALYSIS; MATHEMATICAL MODELS; NEURAL NETWORKS; PROBABILITY;

EID: 0029675743     PISSN: 03080161     EISSN: None     Source Type: Journal    
DOI: 10.1016/0308-0161(94)00056-5     Document Type: Article
Times cited : (3)

References (6)
  • 1
    • 0029673687 scopus 로고    scopus 로고
    • Artificial neural network technology as a method to evaluate the failure bending moment of pipe with cicumferential crack
    • Han, Y.-L., Shen, S.-M. & Dai, S.-H., Artificial neural network technology as a method to evaluate the failure bending moment of pipe with cicumferential crack. Int. J. Pres. Ves. & Piping, 65 (1996).
    • (1996) Int. J. Pres. Ves. & Piping , vol.65
    • Han, Y.-L.1    Shen, S.-M.2    Dai, S.-H.3
  • 5
    • 0025795932 scopus 로고
    • Behavior of pipes under internal pressure and external bending moment - Comparison between experiment and calculation
    • EGF/ESIS8 (Edited by K. Kussmaul), Mechanical Engineering Publication, London
    • Herter, K.-H., Julisch, P., Stoppler, W. & Sturm, D., Behavior of Pipes Under Internal Pressure and External Bending Moment - Comparison Between Experiment and Calculation, in Fracture Mechanics Verification by Large-Scale Testing, EGF/ESIS8 (Edited by K. Kussmaul), Mechanical Engineering Publication, London, 1991, 223-241.
    • (1991) Fracture Mechanics Verification by Large-Scale Testing , pp. 223-241
    • Herter, K.-H.1    Julisch, P.2    Stoppler, W.3    Sturm, D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.