-
7
-
-
0027481223
-
-
W Singer, Annu. Rev Physiol. 55, 349 (1993); W. Singer and C. M. Gray, Annu Rev. Neurosci. 18, 555 (1995)
-
(1993)
Annu. Rev Physiol.
, vol.55
, pp. 349
-
-
Singer, W.1
-
9
-
-
0025912828
-
-
A K. Engel, A. K. Kreiter, P. König, W. Singer, Proc Natl. Acad. Sci U.S.A 88, 6048 (1991).
-
(1991)
Proc Natl. Acad. Sci U.S.A.
, vol.88
, pp. 6048
-
-
Engel, A.K.1
Kreiter, A.K.2
König, P.3
Singer, W.4
-
10
-
-
0026342392
-
-
A. K. Engel, P. Konig, A. K. Kreiter, W. Singer, Science 252, 1177 (1991).
-
(1991)
Science
, vol.252
, pp. 1177
-
-
Engel, A.K.1
Konig, P.2
Kreiter, A.K.3
Singer, W.4
-
11
-
-
0029202135
-
-
L. G. Nowak, M H. J. Munk, J. I. Nelson, A. C. James, J Bullier, J. Neurophysiol. 74, 2379 (1995).
-
(1995)
J. Neurophysiol.
, vol.74
, pp. 2379
-
-
Nowak, L.G.1
Munk, M.H.J.2
Nelson, J.I.3
James, A.C.4
Bullier, J.5
-
12
-
-
0011262258
-
-
C M Gray and W. Singer, Neuroscience 22, S434 (1987); R. Eckhom et al., Biol. Cybem. 60, 121 (1988); A K. Kreiter and W. Singer, Eur. J Neurosci. 4, 369 (1992), R. Eckhorn, A. Frien, R. Bauer, T Woelbern, H. Kehr, Neuroreport 4, 243 (1993)
-
(1987)
Neuroscience
, vol.22
-
-
Gray, C.M.1
Singer, W.2
-
13
-
-
0024255761
-
-
C M Gray and W. Singer, Neuroscience 22, S434 (1987); R. Eckhom et al., Biol. Cybem. 60, 121 (1988); A K. Kreiter and W. Singer, Eur. J Neurosci. 4, 369 (1992), R. Eckhorn, A. Frien, R. Bauer, T Woelbern, H. Kehr, Neuroreport 4, 243 (1993)
-
(1988)
Biol. Cybem.
, vol.60
, pp. 121
-
-
Eckhom, R.1
-
14
-
-
0026508491
-
-
C M Gray and W. Singer, Neuroscience 22, S434 (1987); R. Eckhom et al., Biol. Cybem. 60, 121 (1988); A K. Kreiter and W. Singer, Eur. J Neurosci. 4, 369 (1992), R. Eckhorn, A. Frien, R. Bauer, T Woelbern, H. Kehr, Neuroreport 4, 243 (1993)
-
(1992)
Eur. J Neurosci.
, vol.4
, pp. 369
-
-
Kreiter, A.K.1
Singer, W.2
-
15
-
-
0027402111
-
-
C M Gray and W. Singer, Neuroscience 22, S434 (1987); R. Eckhom et al., Biol. Cybem. 60, 121 (1988); A K. Kreiter and W. Singer, Eur. J Neurosci. 4, 369 (1992), R. Eckhorn, A. Frien, R. Bauer, T Woelbern, H. Kehr, Neuroreport 4, 243 (1993)
-
(1993)
Neuroreport
, vol.4
, pp. 243
-
-
Eckhorn, R.1
Frien, A.2
Bauer, R.3
Woelbern, T.4
Kehr, H.5
-
17
-
-
0024514737
-
-
C. M Gray, P. König, A. K. Engel, W. Singer, Nature 338, 334 (1989); A. K. Engel, P. Konig, W Singer, Proc. Natl. Acad. Sci U.S.A. 88, 9136 (1991).
-
(1989)
Nature
, vol.338
, pp. 334
-
-
Gray, C.M.1
König, P.2
Engel, A.K.3
Singer, W.4
-
18
-
-
0026040881
-
-
C. M Gray, P. König, A. K. Engel, W. Singer, Nature 338, 334 (1989); A. K. Engel, P. Konig, W Singer, Proc. Natl. Acad. Sci U.S.A. 88, 9136 (1991).
-
(1991)
Proc. Natl. Acad. Sci U.S.A.
, vol.88
, pp. 9136
-
-
Engel, A.K.1
Konig, P.2
Singer, W.3
-
20
-
-
0000785774
-
-
M. Steriade and D. Biesold, Eds Oxford Univ. Press, Oxford
-
W. Singer, in Brain Cholinergic Systems, M. Steriade and D. Biesold, Eds (Oxford Univ. Press, Oxford, 1990), pp 314-336
-
(1990)
Brain Cholinergic Systems
, pp. 314-336
-
-
Singer, W.1
-
21
-
-
0025729813
-
-
M. Stenade, R C. Dossi, D Pare, G. Oakson, Proc. Natl. Acad Sci. U.S.A. 88, 4396 (1991).
-
(1991)
Proc. Natl. Acad Sci. U.S.A.
, vol.88
, pp. 4396
-
-
Stenade, M.1
Dossi, R.C.2
Pare, D.3
Oakson, G.4
-
22
-
-
0028049735
-
-
note
-
2 reduction of the fitting procedure exceeded 15% and a z score of >3 was reached, corresponding to a probability of <0 0027 of detection of false positive peaks
-
-
-
-
23
-
-
15844409830
-
-
note
-
LFPs were recorded from the same microelectrodes as MUA by differential filtering (1 to 100 Hz, 3 dB per octave) and digitized at a sampling rate of 1 kHz Power spectra were computed with a resolution of 0.5 Hz and normalized to the total power between 0.1 and 100 Hz. Frequencies between 47.5 and 52 5 Hz were routinely excluded from analysis, and in the figures they are displayed as linear interpolation between flanking values The sample of sufficiently noise-free data was recruited from N = 35 recording site pairs (see Rg 2F). To assess the desynchronizing effect of MRF stimulation, we computed the power spectra of the LFPs before and after MRF stimulation from the same periods of light responses used for cross-correlation analysis and from periods of spontaneous activity that had the same duration.
-
-
-
-
24
-
-
15844402073
-
-
note
-
In the entire sample, MRF stimulation enhanced the relative (normalized) power of the LFPs in frequency bands above 14 Hz during periods of both spontaneous and light-evoked activity [beta (14 to 30 Hz) and gamma (>30 Hz), P < 0.05 in a one-sample t test] and decreased the power in the low-frequency bands for spontaneous activity [alpha (8 to 13 Hz, P < 0.001), theta (4 to 7 Hz, P < 0.01), and delta (1 to 3 Hz, P < 0.05)]. For periods of light-evoked activity, the relative decrease of power in the low-frequency range (<14 Hz) reached significance [alpha (P < 0.05), theta (P < 0 01), and delta (P < 0.01)] only for responses to coherent visual stimuli that also induced response synchronization, but not when compared across all stimulation conditions.
-
-
-
-
25
-
-
15844418006
-
-
note
-
For our sample of 760 recording sequences, in which visual coactivation yielded at least 1.5 times as many spikes during responses as during spontaneous activity in five subsequent stimulus presentations, averaged PSTHs and cross-correlograms were computed for the responses to these five stimulus presentations (example in Fig. 2, A to D). Of these 760 sequences, 134 sequences originating from 48 pairs of recording sites showed significant correlation in at least one of the four blocks; 85 sequences were recorded with coherent and 49 with noncoherent visual stimulation (see Fig. 3) A robust measure for correlation strength, which is close to the mean percentage increase in firing probability [see T. C. Cope, E E. Fetz, M. Matsumura, J. Phystol (London) 390, 161 (1987)], is the relative modulation amplitude (RMA) of the center peak in the correlogram, defined as the ratio of its height to the mean of the correlation function, expressed either as a real number between 0 and 1 or as a percentage. Computing the differences of RMA preserves the identity of individual measurement series before pooling For the same reason, power changes in the gamma frequency band of the LFP are also expressed as differences. Because we had multiple measurement sequences (2.8 on average) for most of the recording site pairs, data are presented (Figs. 2, E and F, and 3E) and used in statistical evaluation as average values per pair We did not normalize the correlograms for the number of stimulus presentations because this would provide no additional information and because the number of trials for each recording sequence (4 times 5) was the same.
-
-
-
-
26
-
-
15844388842
-
-
note
-
The analysis was restricted to those cases where spontaneous fluctuations in correlation strength (RMA) remained within 1 SD of the entire distribution, which corresponded to a value of 0.251 RMA. This requirement was met by 64 of 85 recording sequences during coherent visual stimulation and by 38 of 49 recording sequences during noncoherent visual stimulation Data for correlation changes during noncoherent visual stimulation without MRF activation are not shown.
-
-
-
-
27
-
-
0026072542
-
-
C. Schwarz and J. Bolz, J Neurosci 11, 2995 (1991); J. I. Nelson, P. A. Salin, M. H J. Munk, M Arzi, J Bullier, Visual Neurosci. 9, 21 (1992); P. König, A. K. Engel, S. Löwel, W. Singer, Eur. J. Neurosci 5, 501 (1993); M H J Munk, L. G Nowak, J. I Nelson, J. Bullier, J. Neurophysiol. 74, 2401 (1995).
-
(1991)
J Neurosci
, vol.11
, pp. 2995
-
-
Schwarz, C.1
Bolz, J.2
-
28
-
-
0026891210
-
-
C. Schwarz and J. Bolz, J Neurosci 11, 2995 (1991); J. I. Nelson, P. A. Salin, M. H J. Munk, M Arzi, J Bullier, Visual Neurosci. 9, 21 (1992); P. König, A. K. Engel, S. Löwel, W. Singer, Eur. J. Neurosci 5, 501 (1993); M H J Munk, L. G Nowak, J. I Nelson, J. Bullier, J. Neurophysiol. 74, 2401 (1995).
-
(1992)
Visual Neurosci.
, vol.9
, pp. 21
-
-
Nelson, J.I.1
Salin, P.A.2
Munk, M.H.J.3
Arzi, M.4
Bullier, J.5
-
29
-
-
0027173274
-
-
C. Schwarz and J. Bolz, J Neurosci 11, 2995 (1991); J. I. Nelson, P. A. Salin, M. H J. Munk, M Arzi, J Bullier, Visual Neurosci. 9, 21 (1992); P. König, A. K. Engel, S. Löwel, W. Singer, Eur. J. Neurosci 5, 501 (1993); M H J Munk, L. G Nowak, J. I Nelson, J. Bullier, J. Neurophysiol. 74, 2401 (1995).
-
(1993)
Eur. J. Neurosci
, vol.5
, pp. 501
-
-
König, P.1
Engel, A.K.2
Löwel, S.3
Singer, W.4
-
30
-
-
0029595402
-
-
C. Schwarz and J. Bolz, J Neurosci 11, 2995 (1991); J. I. Nelson, P. A. Salin, M. H J. Munk, M Arzi, J Bullier, Visual Neurosci. 9, 21 (1992); P. König, A. K. Engel, S. Löwel, W. Singer, Eur. J. Neurosci 5, 501 (1993); M H J Munk, L. G Nowak, J. I Nelson, J. Bullier, J. Neurophysiol. 74, 2401 (1995).
-
(1995)
J. Neurophysiol.
, vol.74
, pp. 2401
-
-
Munk, M.H.J.1
Nowak, L.G.2
Nelson, J.I.3
Bullier, J.4
-
31
-
-
0028906438
-
-
P. Konig, A K Engel, W. Singer, Proc. Natl. Acad. Sci. U S.A 92, 290 (1995); A K Engel, P. Konig, T. B Schillen, Curr. Biol. 2, 332 (1992).
-
(1995)
Proc. Natl. Acad. Sci. U S.A.
, vol.92
, pp. 290
-
-
Konig, P.1
Engel, A.K.2
Singer, W.3
-
32
-
-
0000535220
-
-
P. Konig, A K Engel, W. Singer, Proc. Natl. Acad. Sci. U S.A 92, 290 (1995); A K Engel, P. Konig, T. B Schillen, Curr. Biol. 2, 332 (1992).
-
(1992)
Curr. Biol.
, vol.2
, pp. 332
-
-
Engel, A.K.1
Konig, P.2
Schillen, T.B.3
-
33
-
-
0028832656
-
-
W. Singer, Science 270, 758 (1995).
-
(1995)
Science
, vol.270
, pp. 758
-
-
Singer, W.1
-
34
-
-
15844385694
-
-
note
-
We thank S. Herzog and H Klon-Lipok for help with the experiments, M Sum and E. Raulf for expert histology, and R. Ruhl for support with the graphics.
-
-
-
|