메뉴 건너뛰기




Volumn 131, Issue 2, 1996, Pages 135-155

Spatially heterogeneous discrete waves in predator-prey communities over a patchy environment

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; CALCULATION; ENVIRONMENT; MATHEMATICAL ANALYSIS; MATHEMATICAL MODEL; PREDATOR; THEORY;

EID: 0029668372     PISSN: 00255564     EISSN: None     Source Type: Journal    
DOI: 10.1016/0025-5564(95)00035-6     Document Type: Article
Times cited : (2)

References (36)
  • 1
    • 0017140005 scopus 로고
    • Spatial structures in predator-prey communities - A nonlinear time delay diffusional model
    • J. D. Murray, Spatial structures in predator-prey communities - a nonlinear time delay diffusional model, Math. Biosci. 30:73-85 (1976).
    • (1976) Math. Biosci. , vol.30 , pp. 73-85
    • Murray, J.D.1
  • 2
    • 38249035528 scopus 로고
    • Global stability and periodic orbits for two-patch predator-prey diffusion-delay models
    • E. Beretta, F. Solimano, and Y. Takeuchi, Global stability and periodic orbits for two-patch predator-prey diffusion-delay models, Math, Biosci. 85:153-183 (1987).
    • (1987) Math, Biosci. , vol.85 , pp. 153-183
    • Beretta, E.1    Solimano, F.2    Takeuchi, Y.3
  • 3
    • 0023083590 scopus 로고
    • Global stability of single-species diffusion models with continuous time delays
    • E. Beretta and Y. Takeuchi, Global stability of single-species diffusion models with continuous time delays, Bull. Math. Biol. 49:431-448 (1987).
    • (1987) Bull. Math. Biol. , vol.49 , pp. 431-448
    • Beretta, E.1    Takeuchi, Y.2
  • 4
    • 0000839494 scopus 로고
    • Global asymptotic stability of Lotka-Volterra diffusion models with continuous time delay
    • E. Beretta and Y. Takeuchi, Global asymptotic stability of Lotka-Volterra diffusion models with continuous time delay, SIAM J. Appl. Math. 48:627-651 (1988).
    • (1988) SIAM J. Appl. Math. , vol.48 , pp. 627-651
    • Beretta, E.1    Takeuchi, Y.2
  • 5
    • 38249043753 scopus 로고
    • Mathematical models of population interactions with disperal. II: Differential survival in a charge of habitat
    • H. I. Freedman, B. Rai, and P. Waltman, Mathematical models of population interactions with disperal. II: Differential survival in a charge of habitat, J. Math. Anal. Appl. 115:140-154 (1986).
    • (1986) J. Math. Anal. Appl. , vol.115 , pp. 140-154
    • Freedman, H.I.1    Rai, B.2    Waltman, P.3
  • 6
    • 0024854015 scopus 로고
    • Population diffusion in a two-patch environment
    • H. I. Freedman, J. B. Shukla, and Y. Takeuchi, Population diffusion in a two-patch environment, Math. Biosci. 95:111-123 (1989).
    • (1989) Math. Biosci. , vol.95 , pp. 111-123
    • Freedman, H.I.1    Shukla, J.B.2    Takeuchi, Y.3
  • 7
    • 0000262789 scopus 로고
    • Global stability and predator dynamics in a model of prey dispersal in a patchy environment
    • H. I. Freedman and Y. Takeuchi, Global stability and predator dynamics in a model of prey dispersal in a patchy environment, Nonlinear Anal. 13:993-1002 (1989).
    • (1989) Nonlinear Anal. , vol.13 , pp. 993-1002
    • Freedman, H.I.1    Takeuchi, Y.2
  • 8
    • 0001363099 scopus 로고
    • Mathematical models of population interaction with dispersal. I: Stability of two habitats with and without a predator
    • H. I. Freedman and P. Waltman, Mathematical models of population interaction with dispersal. I: Stability of two habitats with and without a predator, SIAM J. Appl. Math. 32:631-648 (1977).
    • (1977) SIAM J. Appl. Math. , vol.32 , pp. 631-648
    • Freedman, H.I.1    Waltman, P.2
  • 9
    • 0000664623 scopus 로고
    • Persistence and global asymptotic stability of single species dispersal models with stage structure
    • H. I. Freedman and J. Wu, Persistence and global asymptotic stability of single species dispersal models with stage structure, Quart. Appl. Math. 49:351-371 (1991).
    • (1991) Quart. Appl. Math. , vol.49 , pp. 351-371
    • Freedman, H.I.1    Wu, J.2
  • 10
    • 0020420302 scopus 로고
    • Dynamics of a single species in a spatially varying environment: The stabilizing role of high dispersal rates
    • H. Hastings, Dynamics of a single species in a spatially varying environment: the stabilizing role of high dispersal rates, J. Math. Biol. 16:49-55 (1982).
    • (1982) J. Math. Biol. , vol.16 , pp. 49-55
    • Hastings, H.1
  • 11
    • 84972506384 scopus 로고
    • Global stability in diffusive delay Lotka-Volterra systems
    • Y. Kuang and H. L. Smith, Global stability in diffusive delay Lotka-Volterra systems, Differ. Integral Equations 4:117-128 (1991).
    • (1991) Differ. Integral Equations , vol.4 , pp. 117-128
    • Kuang, Y.1    Smith, H.L.2
  • 12
    • 0000793907 scopus 로고
    • Dispersion and population interactions
    • S. A. Levin, Dispersion and population interactions. Am. Nat. 108:207-228 (1974).
    • (1974) Am. Nat. , vol.108 , pp. 207-228
    • Levin, S.A.1
  • 13
    • 0010026622 scopus 로고
    • Mathematical population biology
    • S. L. Levin, Mathematical population biology, Proc. Symp. Appl. Math. 30:1-8 (1984).
    • (1984) Proc. Symp. Appl. Math. , vol.30 , pp. 1-8
    • Levin, S.L.1
  • 14
    • 36849153282 scopus 로고
    • An hypothesis to explain the origin of planktonic patchiness
    • S. A. Levin and L. A. Segel, An hypothesis to explain the origin of planktonic patchiness, Nature 259:659 (1976).
    • (1976) Nature , vol.259 , pp. 659
    • Levin, S.A.1    Segel, L.A.2
  • 15
    • 0019132938 scopus 로고
    • Random effects in population models with hereditary effects
    • J. Lin and P. B. Kahn, Random effects in population models with hereditary effects, J. Math. Biol. 10: 101-112 (1980).
    • (1980) J. Math. Biol. , vol.10 , pp. 101-112
    • Lin, J.1    Kahn, P.B.2
  • 16
    • 0020471248 scopus 로고
    • Phase and amplitude instability in delay-diffusion population models
    • J. Lin and P. B. Kahn, Phase and amplitude instability in delay-diffusion population models, J. Math. Biol. 13:383-393 (1982).
    • (1982) J. Math. Biol. , vol.13 , pp. 383-393
    • Lin, J.1    Kahn, P.B.2
  • 17
    • 0018142486 scopus 로고
    • Persistence and stability of single-species and prey-predator systems in spatially heterogeneous environments
    • R. McMurtie, Persistence and stability of single-species and prey-predator systems in spatially heterogeneous environments, Math. Biosci. 39:11-51 (1978).
    • (1978) Math. Biosci. , vol.39 , pp. 11-51
    • McMurtie, R.1
  • 18
    • 0002197942 scopus 로고
    • Spatial heterogeneity and interspecific competition
    • S. W. Pacala and J. Roughgarden, Spatial heterogeneity and interspecific competition, Theor. Popul. Biol. 21:92-113 (1982).
    • (1982) Theor. Popul. Biol. , vol.21 , pp. 92-113
    • Pacala, S.W.1    Roughgarden, J.2
  • 19
    • 0006478083 scopus 로고
    • The role of rapid dispersal in the population dynamics of competition
    • N. Shigesada and J. Roughgarden, The role of rapid dispersal in the population dynamics of competition, Theor. Popul. Biol. 21:353-372 (1982).
    • (1982) Theor. Popul. Biol. , vol.21 , pp. 353-372
    • Shigesada, N.1    Roughgarden, J.2
  • 20
    • 0009636209 scopus 로고
    • Random dispersal in theoretical populations
    • J. G. Skellam, Random dispersal in theoretical populations, Biometrika 38:196-218 (1951).
    • (1951) Biometrika , vol.38 , pp. 196-218
    • Skellam, J.G.1
  • 21
    • 0016705918 scopus 로고
    • On a population model
    • D. Stirzaker, On a population model, Math. Biosci. 23:329-336 (1976).
    • (1976) Math. Biosci. , vol.23 , pp. 329-336
    • Stirzaker, D.1
  • 22
    • 0022870590 scopus 로고
    • Diffusion effect in stability of Lotka-Volterra models
    • Y. Takeuchi, Diffusion effect in stability of Lotka-Volterra models, Bull. Math. Biol. 48:585-601 (1986).
    • (1986) Bull. Math. Biol. , vol.48 , pp. 585-601
    • Takeuchi, Y.1
  • 23
    • 0021623121 scopus 로고
    • The effect of dispersal on population stability in one-species, discrete-space population growth models
    • R. R. Vance, The effect of dispersal on population stability in one-species, discrete-space population growth models, Am. Nat. 123:230-254 (1984).
    • (1984) Am. Nat. , vol.123 , pp. 230-254
    • Vance, R.R.1
  • 24
    • 0011315952 scopus 로고
    • Discrete waves and phase-locked oscillations in the growth of a single-species population over a patchy environment
    • J. Wu and W. Krawcewicz, Discrete waves and phase-locked oscillations in the growth of a single-species population over a patchy environment, Open Syst. Inf. Dynam. 1:127-147 (1992).
    • (1992) Open Syst. Inf. Dynam. , vol.1 , pp. 127-147
    • Wu, J.1    Krawcewicz, W.2
  • 26
    • 85031215737 scopus 로고    scopus 로고
    • Stability and bifurcations of equilibrium in a multiple-delayed differential equation
    • to appear
    • S. A. Campbell and J. Belair, Stability and bifurcations of equilibrium in a multiple-delayed differential equation, SIAM J. Appl. Math. to appear.
    • SIAM J. Appl. Math.
    • Campbell, S.A.1    Belair, J.2
  • 27
    • 85031222001 scopus 로고
    • Global geometry of the stable regions for two delay differential equations
    • Georgia Tech.
    • J. Hale and W. Huang, Global geometry of the stable regions for two delay differential equations, Tech. Rep. CDSNS90-41, Georgia Tech., 1990.
    • (1990) Tech. Rep. CDSNS90-41
    • Hale, J.1    Huang, W.2
  • 29
    • 0006663143 scopus 로고
    • Differential delay equations with two time lags
    • R. D. Nussbaum, Differential delay equations with two time lags, Mem. Amer. Math. Soc. 16:1-62 (1975).
    • (1975) Mem. Amer. Math. Soc. , vol.16 , pp. 1-62
    • Nussbaum, R.D.1
  • 30
    • 84985382126 scopus 로고
    • Effect of two time delays on partial differential equations
    • K. Yoshida and K. Kishimoto, Effect of two time delays on partial differential equations, Kumamoto J. Sci. Math. 15:91-109 (1983).
    • (1983) Kumamoto J. Sci. Math. , vol.15 , pp. 91-109
    • Yoshida, K.1    Kishimoto, K.2
  • 33
    • 85031220169 scopus 로고    scopus 로고
    • The effect of delay and diffusion on spontaneous symmetry breaking in functional differential equations
    • to appear
    • J. Wu, The effect of delay and diffusion on spontaneous symmetry breaking in functional differential equations, Rocky Mt. J. Math., to appear.
    • Rocky Mt. J. Math.
    • Wu, J.1
  • 36
    • 0000711674 scopus 로고
    • Global bifurcations of phase-locked oscillations
    • J. C. Alexander and G. Auchmuty, Global bifurcations of phase-locked oscillations, Arch. Ration. Mech. Anal. 93:253-270 (1986).
    • (1986) Arch. Ration. Mech. Anal. , vol.93 , pp. 253-270
    • Alexander, J.C.1    Auchmuty, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.